亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning-based personalized subthalamic biomarkers predict ON-OFF levodopa states in Parkinson patients

局部场电位 帕金森病 电生理学 神经生理学 机器学习 丘脑底核 神经科学 左旋多巴 计算机科学 人工智能 医学 脑深部刺激 物理医学与康复 心理学 疾病 内科学
作者
Daniel Sand,Pnina Rappel,Odeya Marmor,Atira Bick,David Arkadir,Bao-Liang Lu,Hagai Bergman,Zvi Israel,Renana Eitan
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (4): 046058-046058 被引量:6
标识
DOI:10.1088/1741-2552/abfc1d
摘要

Abstract Objective. Adaptive deep brain stimulation (aDBS) based on subthalamic nucleus (STN) electrophysiology has recently been proposed to improve clinical outcomes of DBS for Parkinson’s disease (PD) patients. Many current models for aDBS are based on one or two electrophysiological features of STN activity, such as beta or gamma activity. Although these models have shown interesting results, we hypothesized that an aDBS model that includes many STN activity parameters will yield better clinical results. The objective of this study was to investigate the most appropriate STN neurophysiological biomarkers, detectable over long periods of time, that can predict OFF and ON levodopa states in PD patients. Approach. Long-term local field potentials (LFPs) were recorded from eight STNs (four PD patients) during 92 recording sessions (44 OFF and 48 ON levodopa states), over a period of 3–12 months. Electrophysiological analysis included the power of frequency bands, band power ratio and burst features. A total of 140 engineered features was extracted for 20 040 epochs (each epoch lasting 5 s). Based on these engineered features, machine learning (ML) models classified LFPs as OFF vs ON levodopa states. Main results. Beta and gamma band activity alone poorly predicts OFF vs ON levodopa states, with an accuracy of 0.66 and 0.64, respectively. Group ML analysis slightly improved prediction rates, but personalized ML analysis, based on individualized engineered electrophysiological features, were markedly better, predicting OFF vs ON levodopa states with an accuracy of 0.8 for support vector machine learning models. Significance. We showed that individual patients have unique sets of STN neurophysiological biomarkers that can be detected over long periods of time. ML models revealed that personally classified engineered features most accurately predict OFF vs ON levodopa states. Future development of aDBS for PD patients might include personalized ML algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
Huyyy完成签到,获得积分20
7秒前
grnn完成签到,获得积分10
7秒前
牛牛完成签到 ,获得积分10
9秒前
16秒前
黄小柒发布了新的文献求助10
16秒前
康康XY完成签到 ,获得积分10
21秒前
研友_Z6Qrbn完成签到,获得积分10
23秒前
chenting完成签到 ,获得积分10
24秒前
黄小柒完成签到,获得积分20
29秒前
666999完成签到,获得积分10
31秒前
faylinn完成签到,获得积分10
31秒前
怕孤独的海秋完成签到,获得积分10
33秒前
木头完成签到 ,获得积分10
48秒前
DW完成签到,获得积分10
49秒前
ylyao完成签到 ,获得积分10
50秒前
热带蚂蚁完成签到 ,获得积分10
54秒前
VDC应助科研通管家采纳,获得30
58秒前
VDC应助科研通管家采纳,获得30
58秒前
VDC应助科研通管家采纳,获得30
58秒前
科目三应助科研通管家采纳,获得10
58秒前
MchemG应助科研通管家采纳,获得10
58秒前
VDC应助科研通管家采纳,获得30
59秒前
可靠从云完成签到 ,获得积分10
1分钟前
1分钟前
lu525完成签到 ,获得积分10
1分钟前
科研通AI5应助安生采纳,获得10
1分钟前
LC完成签到 ,获得积分10
1分钟前
心灵美半邪完成签到 ,获得积分10
1分钟前
1分钟前
酷酷的涵蕾完成签到 ,获得积分10
1分钟前
在水一方完成签到 ,获得积分10
1分钟前
虚心的飞飞完成签到,获得积分10
1分钟前
不知道起啥名字完成签到 ,获得积分10
1分钟前
1分钟前
哈哈发布了新的文献求助10
1分钟前
1分钟前
Kevin完成签到,获得积分10
1分钟前
Lyanph完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671180
求助须知:如何正确求助?哪些是违规求助? 3228098
关于积分的说明 9778330
捐赠科研通 2938347
什么是DOI,文献DOI怎么找? 1609853
邀请新用户注册赠送积分活动 760473
科研通“疑难数据库(出版商)”最低求助积分说明 735976