Real-Time Outlier Detection Applied to a Doppler Velocity Log Sensor Based on Hybrid Autoencoder and Recurrent Neural Network

异常检测 自编码 离群值 计算机科学 人工智能 循环神经网络 人工神经网络 卡尔曼滤波器 深度学习 模式识别(心理学) 计算机视觉
作者
Narjes Davari,A. Pedro Aguiar
出处
期刊:IEEE Journal of Oceanic Engineering [Institute of Electrical and Electronics Engineers]
卷期号:46 (4): 1288-1301 被引量:10
标识
DOI:10.1109/joe.2021.3057909
摘要

This article presents a real-time outlier detection deep-learning (OD-DL)-based method using a hybridized artificial neural network (ANN) approach. We propose an unsupervised ANN scheme that runs in parallel, a denoising autoencoder (DAE) and a recurrent neural network (RNN). The DAE aims to reconstruct relevant/normal input data, whereas it seeks to ignore outliers; the RNN, with a recursive structure, is used to predict time-series data. As measurements arrive, two tasks are performed: 1) the outlier decision, which is based on a reconstruction error and an energy score criteria from the output difference between the DAE and the RNN; and 2) the training procedure for both DAE and RNN. The proposed OD-DL scheme is specifically targeted to address the outlier problem of the data generated by a Doppler velocity log (DVL) sensor installed on board of an autonomous underwater vehicle (AUV) to enhance the AUV navigation system performance. In particular, the DVL data enter into the OD-DL scheme whose output is fed into an AUV navigation system that runs an error-state Kalman filter that integrates the corrected DVL data with the measurements of an inertial measurement unit and a depth meter. The experimental results show that the AUV navigation system with the OD-DL method outperforms in terms of a more accurate estimated position when compared with the case that there is no outlier detection and with the case of a navigation system using a conventional outlier detection method, or other simpler deep-learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
eso完成签到,获得积分10
2秒前
领导范儿应助wschenau采纳,获得10
2秒前
于茜完成签到,获得积分10
3秒前
怡然问晴应助Zzzzz采纳,获得10
3秒前
4秒前
dan_1314发布了新的文献求助10
4秒前
李健应助自由莺采纳,获得10
5秒前
虚幻初之发布了新的文献求助10
5秒前
Owen应助OsHTAS采纳,获得10
6秒前
6秒前
8秒前
Lynn发布了新的文献求助10
8秒前
Drzhang完成签到 ,获得积分10
8秒前
10秒前
俭朴尔竹发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
chen应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
14秒前
14秒前
chen应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得30
14秒前
烟花应助科研通管家采纳,获得10
14秒前
chen应助科研通管家采纳,获得10
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
css完成签到,获得积分10
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
eureka发布了新的文献求助10
15秒前
丘比特应助百汇科研采纳,获得10
16秒前
17秒前
科研通AI2S应助LUpy采纳,获得10
17秒前
fahbfafajk发布了新的文献求助10
17秒前
zzz应助啵啵鱼采纳,获得10
18秒前
搜集达人应助soda采纳,获得10
18秒前
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458734
求助须知:如何正确求助?哪些是违规求助? 3053505
关于积分的说明 9036831
捐赠科研通 2742695
什么是DOI,文献DOI怎么找? 1504509
科研通“疑难数据库(出版商)”最低求助积分说明 695319
邀请新用户注册赠送积分活动 694519