Real-Time Outlier Detection Applied to a Doppler Velocity Log Sensor Based on Hybrid Autoencoder and Recurrent Neural Network

异常检测 自编码 离群值 计算机科学 人工智能 循环神经网络 人工神经网络 卡尔曼滤波器 深度学习 模式识别(心理学) 计算机视觉
作者
Narjes Davari,A. Pedro Aguiar
出处
期刊:IEEE Journal of Oceanic Engineering [Institute of Electrical and Electronics Engineers]
卷期号:46 (4): 1288-1301 被引量:10
标识
DOI:10.1109/joe.2021.3057909
摘要

This article presents a real-time outlier detection deep-learning (OD-DL)-based method using a hybridized artificial neural network (ANN) approach. We propose an unsupervised ANN scheme that runs in parallel, a denoising autoencoder (DAE) and a recurrent neural network (RNN). The DAE aims to reconstruct relevant/normal input data, whereas it seeks to ignore outliers; the RNN, with a recursive structure, is used to predict time-series data. As measurements arrive, two tasks are performed: 1) the outlier decision, which is based on a reconstruction error and an energy score criteria from the output difference between the DAE and the RNN; and 2) the training procedure for both DAE and RNN. The proposed OD-DL scheme is specifically targeted to address the outlier problem of the data generated by a Doppler velocity log (DVL) sensor installed on board of an autonomous underwater vehicle (AUV) to enhance the AUV navigation system performance. In particular, the DVL data enter into the OD-DL scheme whose output is fed into an AUV navigation system that runs an error-state Kalman filter that integrates the corrected DVL data with the measurements of an inertial measurement unit and a depth meter. The experimental results show that the AUV navigation system with the OD-DL method outperforms in terms of a more accurate estimated position when compared with the case that there is no outlier detection and with the case of a navigation system using a conventional outlier detection method, or other simpler deep-learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莽哥发布了新的文献求助10
刚刚
bin_zhang发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
田様应助Doris采纳,获得10
1秒前
李健应助大大大长腿采纳,获得10
2秒前
LJ发布了新的文献求助10
2秒前
2秒前
3秒前
李健应助止观采纳,获得10
3秒前
克泷发布了新的文献求助10
3秒前
Lucas应助Sandstorm采纳,获得10
3秒前
迷人书蝶发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
星星完成签到 ,获得积分10
4秒前
番茄市长完成签到,获得积分10
4秒前
自由千风完成签到,获得积分10
4秒前
aaa发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
苹果发布了新的文献求助30
5秒前
Yuan88发布了新的文献求助10
5秒前
绍成完成签到 ,获得积分10
5秒前
安阳发布了新的文献求助10
5秒前
6秒前
1021发布了新的文献求助10
6秒前
6秒前
王崇霖完成签到,获得积分10
6秒前
大个应助氢锂钠钾铷铯钫采纳,获得10
6秒前
思源应助研症采纳,获得10
6秒前
深情安青应助victini采纳,获得10
7秒前
自由千风发布了新的文献求助10
7秒前
苹果似狮发布了新的文献求助10
7秒前
Lucas应助糊涂的滑板采纳,获得10
7秒前
wjx发布了新的文献求助10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Vertebrate Palaeontology, 5th Edition 480
Aircraft Engine Design, Third Edition 308
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5155371
求助须知:如何正确求助?哪些是违规求助? 4351063
关于积分的说明 13547192
捐赠科研通 4193867
什么是DOI,文献DOI怎么找? 2300162
邀请新用户注册赠送积分活动 1300091
关于科研通互助平台的介绍 1245111