Real-Time Outlier Detection Applied to a Doppler Velocity Log Sensor Based on Hybrid Autoencoder and Recurrent Neural Network

异常检测 自编码 离群值 计算机科学 人工智能 循环神经网络 人工神经网络 卡尔曼滤波器 深度学习 模式识别(心理学) 计算机视觉
作者
Narjes Davari,A. Pedro Aguiar
出处
期刊:IEEE Journal of Oceanic Engineering [Institute of Electrical and Electronics Engineers]
卷期号:46 (4): 1288-1301 被引量:10
标识
DOI:10.1109/joe.2021.3057909
摘要

This article presents a real-time outlier detection deep-learning (OD-DL)-based method using a hybridized artificial neural network (ANN) approach. We propose an unsupervised ANN scheme that runs in parallel, a denoising autoencoder (DAE) and a recurrent neural network (RNN). The DAE aims to reconstruct relevant/normal input data, whereas it seeks to ignore outliers; the RNN, with a recursive structure, is used to predict time-series data. As measurements arrive, two tasks are performed: 1) the outlier decision, which is based on a reconstruction error and an energy score criteria from the output difference between the DAE and the RNN; and 2) the training procedure for both DAE and RNN. The proposed OD-DL scheme is specifically targeted to address the outlier problem of the data generated by a Doppler velocity log (DVL) sensor installed on board of an autonomous underwater vehicle (AUV) to enhance the AUV navigation system performance. In particular, the DVL data enter into the OD-DL scheme whose output is fed into an AUV navigation system that runs an error-state Kalman filter that integrates the corrected DVL data with the measurements of an inertial measurement unit and a depth meter. The experimental results show that the AUV navigation system with the OD-DL method outperforms in terms of a more accurate estimated position when compared with the case that there is no outlier detection and with the case of a navigation system using a conventional outlier detection method, or other simpler deep-learning methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
王凡渡完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
机智醉波完成签到,获得积分10
3秒前
5秒前
安静绯发布了新的文献求助10
6秒前
6秒前
诚熠发布了新的文献求助10
7秒前
8秒前
8秒前
蜡笔小新发布了新的文献求助10
11秒前
今后应助爱狗人士Hito采纳,获得10
11秒前
Vivian完成签到,获得积分10
11秒前
123发布了新的文献求助10
12秒前
暴富发布了新的文献求助10
12秒前
鲜艳的芹发布了新的文献求助10
12秒前
jixing完成签到,获得积分10
15秒前
秋qiu完成签到,获得积分10
15秒前
爆米花应助安静绯采纳,获得10
15秒前
英俊的铭应助yyanxuemin919采纳,获得10
16秒前
16秒前
FashionBoy应助HSY采纳,获得10
19秒前
代维健的大黑完成签到,获得积分10
20秒前
22秒前
finish发布了新的文献求助10
23秒前
传奇3应助123采纳,获得10
24秒前
24秒前
26秒前
27秒前
28秒前
传奇3应助大胆的寻菡采纳,获得10
30秒前
31秒前
leezz完成签到,获得积分10
31秒前
SC30发布了新的文献求助10
33秒前
浮游应助科研通管家采纳,获得10
34秒前
幼儿园老大完成签到,获得积分10
34秒前
研友_VZG7GZ应助科研通管家采纳,获得10
34秒前
niNe3YUE应助科研通管家采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560166
求助须知:如何正确求助?哪些是违规求助? 4645315
关于积分的说明 14674844
捐赠科研通 4586430
什么是DOI,文献DOI怎么找? 2516437
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460870