Real-Time Outlier Detection Applied to a Doppler Velocity Log Sensor Based on Hybrid Autoencoder and Recurrent Neural Network

异常检测 自编码 离群值 计算机科学 人工智能 循环神经网络 人工神经网络 卡尔曼滤波器 深度学习 模式识别(心理学) 计算机视觉
作者
Narjes Davari,A. Pedro Aguiar
出处
期刊:IEEE Journal of Oceanic Engineering [Institute of Electrical and Electronics Engineers]
卷期号:46 (4): 1288-1301 被引量:10
标识
DOI:10.1109/joe.2021.3057909
摘要

This article presents a real-time outlier detection deep-learning (OD-DL)-based method using a hybridized artificial neural network (ANN) approach. We propose an unsupervised ANN scheme that runs in parallel, a denoising autoencoder (DAE) and a recurrent neural network (RNN). The DAE aims to reconstruct relevant/normal input data, whereas it seeks to ignore outliers; the RNN, with a recursive structure, is used to predict time-series data. As measurements arrive, two tasks are performed: 1) the outlier decision, which is based on a reconstruction error and an energy score criteria from the output difference between the DAE and the RNN; and 2) the training procedure for both DAE and RNN. The proposed OD-DL scheme is specifically targeted to address the outlier problem of the data generated by a Doppler velocity log (DVL) sensor installed on board of an autonomous underwater vehicle (AUV) to enhance the AUV navigation system performance. In particular, the DVL data enter into the OD-DL scheme whose output is fed into an AUV navigation system that runs an error-state Kalman filter that integrates the corrected DVL data with the measurements of an inertial measurement unit and a depth meter. The experimental results show that the AUV navigation system with the OD-DL method outperforms in terms of a more accurate estimated position when compared with the case that there is no outlier detection and with the case of a navigation system using a conventional outlier detection method, or other simpler deep-learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KComboN完成签到 ,获得积分10
刚刚
bkagyin应助saisyo采纳,获得10
1秒前
Xenia发布了新的文献求助10
2秒前
cyw发布了新的文献求助10
2秒前
4秒前
Akim应助小清新采纳,获得10
5秒前
王羲之发布了新的文献求助10
6秒前
充电宝应助期期采纳,获得10
6秒前
Hello应助陌路孤星采纳,获得10
7秒前
挣钱抱男模完成签到,获得积分10
7秒前
玫瑰遇上奶油完成签到 ,获得积分10
7秒前
ZhangXR完成签到,获得积分10
8秒前
科研通AI2S应助lagom采纳,获得10
8秒前
无聊的老姆完成签到 ,获得积分10
8秒前
科目三应助hideyoshi采纳,获得10
8秒前
9秒前
9秒前
34882738发布了新的文献求助50
11秒前
11秒前
11秒前
万能图书馆应助tzy采纳,获得10
12秒前
田様应助汪汪队睡大觉采纳,获得10
12秒前
fanfan完成签到,获得积分10
12秒前
YamDaamCaa应助MizzZeus采纳,获得30
12秒前
完美世界应助大地采纳,获得10
12秒前
紫菱发布了新的文献求助10
13秒前
15秒前
15秒前
健忘的幼晴完成签到,获得积分10
15秒前
15秒前
16秒前
半天发布了新的文献求助10
16秒前
ForZero完成签到 ,获得积分10
16秒前
16秒前
17秒前
18秒前
打打应助此晴可待采纳,获得10
20秒前
嗯嗯发布了新的文献求助10
20秒前
21秒前
yufanhui应助MizzZeus采纳,获得10
21秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974882
求助须知:如何正确求助?哪些是违规求助? 3519431
关于积分的说明 11198315
捐赠科研通 3255698
什么是DOI,文献DOI怎么找? 1797904
邀请新用户注册赠送积分活动 877237
科研通“疑难数据库(出版商)”最低求助积分说明 806219