Real-Time Outlier Detection Applied to a Doppler Velocity Log Sensor Based on Hybrid Autoencoder and Recurrent Neural Network

异常检测 自编码 离群值 计算机科学 人工智能 循环神经网络 人工神经网络 卡尔曼滤波器 深度学习 模式识别(心理学) 计算机视觉
作者
Narjes Davari,A. Pedro Aguiar
出处
期刊:IEEE Journal of Oceanic Engineering [Institute of Electrical and Electronics Engineers]
卷期号:46 (4): 1288-1301 被引量:10
标识
DOI:10.1109/joe.2021.3057909
摘要

This article presents a real-time outlier detection deep-learning (OD-DL)-based method using a hybridized artificial neural network (ANN) approach. We propose an unsupervised ANN scheme that runs in parallel, a denoising autoencoder (DAE) and a recurrent neural network (RNN). The DAE aims to reconstruct relevant/normal input data, whereas it seeks to ignore outliers; the RNN, with a recursive structure, is used to predict time-series data. As measurements arrive, two tasks are performed: 1) the outlier decision, which is based on a reconstruction error and an energy score criteria from the output difference between the DAE and the RNN; and 2) the training procedure for both DAE and RNN. The proposed OD-DL scheme is specifically targeted to address the outlier problem of the data generated by a Doppler velocity log (DVL) sensor installed on board of an autonomous underwater vehicle (AUV) to enhance the AUV navigation system performance. In particular, the DVL data enter into the OD-DL scheme whose output is fed into an AUV navigation system that runs an error-state Kalman filter that integrates the corrected DVL data with the measurements of an inertial measurement unit and a depth meter. The experimental results show that the AUV navigation system with the OD-DL method outperforms in terms of a more accurate estimated position when compared with the case that there is no outlier detection and with the case of a navigation system using a conventional outlier detection method, or other simpler deep-learning methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助kid采纳,获得10
刚刚
刚刚
Brown完成签到,获得积分10
1秒前
zzz发布了新的文献求助10
1秒前
xiaoliu完成签到,获得积分10
2秒前
2秒前
3秒前
dglyl发布了新的文献求助10
3秒前
科研通AI6应助lc采纳,获得10
4秒前
5秒前
自觉的丹珍完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
崽崽发布了新的文献求助10
8秒前
无花果应助背后的广山采纳,获得10
8秒前
共享精神应助小白采纳,获得10
8秒前
8秒前
ZL完成签到,获得积分10
9秒前
淡然冬灵发布了新的文献求助10
9秒前
营长完成签到 ,获得积分10
9秒前
9秒前
9秒前
diguohu发布了新的文献求助10
10秒前
12秒前
red发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
14秒前
失眠采白完成签到,获得积分10
14秒前
Jocelyn完成签到,获得积分10
14秒前
15秒前
pkouji发布了新的文献求助10
15秒前
个性的紫菜应助彩色青亦采纳,获得10
15秒前
lsq完成签到 ,获得积分10
15秒前
田様应助草拟大坝采纳,获得10
16秒前
老李发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646490
求助须知:如何正确求助?哪些是违规求助? 4771445
关于积分的说明 15035283
捐赠科研通 4805288
什么是DOI,文献DOI怎么找? 2569581
邀请新用户注册赠送积分活动 1526573
关于科研通互助平台的介绍 1485858