Real-Time Outlier Detection Applied to a Doppler Velocity Log Sensor Based on Hybrid Autoencoder and Recurrent Neural Network

异常检测 自编码 离群值 计算机科学 人工智能 循环神经网络 人工神经网络 卡尔曼滤波器 深度学习 模式识别(心理学) 计算机视觉
作者
Narjes Davari,A. Pedro Aguiar
出处
期刊:IEEE Journal of Oceanic Engineering [Institute of Electrical and Electronics Engineers]
卷期号:46 (4): 1288-1301 被引量:10
标识
DOI:10.1109/joe.2021.3057909
摘要

This article presents a real-time outlier detection deep-learning (OD-DL)-based method using a hybridized artificial neural network (ANN) approach. We propose an unsupervised ANN scheme that runs in parallel, a denoising autoencoder (DAE) and a recurrent neural network (RNN). The DAE aims to reconstruct relevant/normal input data, whereas it seeks to ignore outliers; the RNN, with a recursive structure, is used to predict time-series data. As measurements arrive, two tasks are performed: 1) the outlier decision, which is based on a reconstruction error and an energy score criteria from the output difference between the DAE and the RNN; and 2) the training procedure for both DAE and RNN. The proposed OD-DL scheme is specifically targeted to address the outlier problem of the data generated by a Doppler velocity log (DVL) sensor installed on board of an autonomous underwater vehicle (AUV) to enhance the AUV navigation system performance. In particular, the DVL data enter into the OD-DL scheme whose output is fed into an AUV navigation system that runs an error-state Kalman filter that integrates the corrected DVL data with the measurements of an inertial measurement unit and a depth meter. The experimental results show that the AUV navigation system with the OD-DL method outperforms in terms of a more accurate estimated position when compared with the case that there is no outlier detection and with the case of a navigation system using a conventional outlier detection method, or other simpler deep-learning methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏打水发布了新的文献求助10
1秒前
秦111发布了新的文献求助10
1秒前
927发布了新的文献求助10
1秒前
1秒前
王也笑然完成签到,获得积分10
1秒前
可爱的函函应助穆仰采纳,获得10
1秒前
SciGPT应助张子珍采纳,获得10
2秒前
共享精神应助CClaire采纳,获得10
3秒前
谦让水香完成签到,获得积分10
3秒前
3秒前
柱子pillar完成签到,获得积分10
4秒前
SciGPT应助碧蓝网络采纳,获得10
4秒前
星辰大海应助穆仰采纳,获得10
5秒前
gaugua完成签到,获得积分10
5秒前
5秒前
6秒前
沉默的凝云完成签到,获得积分10
7秒前
雪雪完成签到,获得积分10
7秒前
7秒前
XZZH完成签到,获得积分10
7秒前
7秒前
8秒前
Luckqi6688完成签到,获得积分10
8秒前
浪里白条完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
hu发布了新的文献求助20
8秒前
9秒前
agnes发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
gro_ele发布了新的文献求助10
9秒前
9秒前
完美的铸海完成签到,获得积分10
9秒前
9秒前
天天快乐应助kobespecial采纳,获得30
10秒前
10秒前
麋鹿完成签到,获得积分10
10秒前
李健的小迷弟应助cola采纳,获得30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512517
求助须知:如何正确求助?哪些是违规求助? 4606978
关于积分的说明 14502144
捐赠科研通 4542339
什么是DOI,文献DOI怎么找? 2489004
邀请新用户注册赠送积分活动 1471040
关于科研通互助平台的介绍 1443182