Real-Time Outlier Detection Applied to a Doppler Velocity Log Sensor Based on Hybrid Autoencoder and Recurrent Neural Network

异常检测 自编码 离群值 计算机科学 人工智能 循环神经网络 人工神经网络 卡尔曼滤波器 深度学习 模式识别(心理学) 计算机视觉
作者
Narjes Davari,A. Pedro Aguiar
出处
期刊:IEEE Journal of Oceanic Engineering [Institute of Electrical and Electronics Engineers]
卷期号:46 (4): 1288-1301 被引量:10
标识
DOI:10.1109/joe.2021.3057909
摘要

This article presents a real-time outlier detection deep-learning (OD-DL)-based method using a hybridized artificial neural network (ANN) approach. We propose an unsupervised ANN scheme that runs in parallel, a denoising autoencoder (DAE) and a recurrent neural network (RNN). The DAE aims to reconstruct relevant/normal input data, whereas it seeks to ignore outliers; the RNN, with a recursive structure, is used to predict time-series data. As measurements arrive, two tasks are performed: 1) the outlier decision, which is based on a reconstruction error and an energy score criteria from the output difference between the DAE and the RNN; and 2) the training procedure for both DAE and RNN. The proposed OD-DL scheme is specifically targeted to address the outlier problem of the data generated by a Doppler velocity log (DVL) sensor installed on board of an autonomous underwater vehicle (AUV) to enhance the AUV navigation system performance. In particular, the DVL data enter into the OD-DL scheme whose output is fed into an AUV navigation system that runs an error-state Kalman filter that integrates the corrected DVL data with the measurements of an inertial measurement unit and a depth meter. The experimental results show that the AUV navigation system with the OD-DL method outperforms in terms of a more accurate estimated position when compared with the case that there is no outlier detection and with the case of a navigation system using a conventional outlier detection method, or other simpler deep-learning methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
求助人员发布了新的文献求助10
1秒前
junzilan完成签到,获得积分10
1秒前
七月完成签到,获得积分10
1秒前
ffwwxye完成签到,获得积分10
1秒前
我不是阿良完成签到,获得积分10
1秒前
1秒前
上官若男应助豆豆采纳,获得10
2秒前
刻苦的秋玲完成签到,获得积分10
2秒前
2秒前
min发布了新的文献求助10
2秒前
Zoro完成签到,获得积分10
2秒前
令狐子轩完成签到,获得积分10
3秒前
3秒前
heli完成签到,获得积分10
3秒前
昏睡的咖啡完成签到,获得积分10
3秒前
3秒前
活泼的平灵完成签到,获得积分10
3秒前
mini完成签到,获得积分10
3秒前
曾曾完成签到,获得积分10
4秒前
4秒前
Zoro发布了新的文献求助10
5秒前
Gao发布了新的文献求助20
5秒前
杨杨杨发布了新的文献求助20
5秒前
5秒前
Owen应助和平星采纳,获得10
5秒前
林林完成签到,获得积分10
5秒前
艾文发布了新的文献求助10
5秒前
陆小花完成签到,获得积分20
5秒前
义气的夏寒完成签到,获得积分10
5秒前
子车茗应助疯狂的雁荷采纳,获得30
6秒前
yxy完成签到,获得积分10
6秒前
其实是北北吖完成签到,获得积分10
6秒前
Jared应助Banana采纳,获得10
6秒前
迷路的心锁完成签到 ,获得积分10
6秒前
6秒前
LS完成签到 ,获得积分10
6秒前
大黑完成签到 ,获得积分10
7秒前
深情安青应助月兮2013采纳,获得10
7秒前
7秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585284
求助须知:如何正确求助?哪些是违规求助? 4669106
关于积分的说明 14774781
捐赠科研通 4617521
什么是DOI,文献DOI怎么找? 2530479
邀请新用户注册赠送积分活动 1499197
关于科研通互助平台的介绍 1467660