Real-Time Outlier Detection Applied to a Doppler Velocity Log Sensor Based on Hybrid Autoencoder and Recurrent Neural Network

异常检测 自编码 离群值 计算机科学 人工智能 循环神经网络 人工神经网络 卡尔曼滤波器 深度学习 模式识别(心理学) 计算机视觉
作者
Narjes Davari,A. Pedro Aguiar
出处
期刊:IEEE Journal of Oceanic Engineering [Institute of Electrical and Electronics Engineers]
卷期号:46 (4): 1288-1301 被引量:10
标识
DOI:10.1109/joe.2021.3057909
摘要

This article presents a real-time outlier detection deep-learning (OD-DL)-based method using a hybridized artificial neural network (ANN) approach. We propose an unsupervised ANN scheme that runs in parallel, a denoising autoencoder (DAE) and a recurrent neural network (RNN). The DAE aims to reconstruct relevant/normal input data, whereas it seeks to ignore outliers; the RNN, with a recursive structure, is used to predict time-series data. As measurements arrive, two tasks are performed: 1) the outlier decision, which is based on a reconstruction error and an energy score criteria from the output difference between the DAE and the RNN; and 2) the training procedure for both DAE and RNN. The proposed OD-DL scheme is specifically targeted to address the outlier problem of the data generated by a Doppler velocity log (DVL) sensor installed on board of an autonomous underwater vehicle (AUV) to enhance the AUV navigation system performance. In particular, the DVL data enter into the OD-DL scheme whose output is fed into an AUV navigation system that runs an error-state Kalman filter that integrates the corrected DVL data with the measurements of an inertial measurement unit and a depth meter. The experimental results show that the AUV navigation system with the OD-DL method outperforms in terms of a more accurate estimated position when compared with the case that there is no outlier detection and with the case of a navigation system using a conventional outlier detection method, or other simpler deep-learning methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
麦辣鸡腿堡完成签到,获得积分10
1秒前
acuis发布了新的文献求助10
1秒前
王镇发布了新的文献求助10
1秒前
HOAN应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
JayceHe应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
holly完成签到,获得积分10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
Virgil完成签到,获得积分10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
虚幻导师发布了新的文献求助10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
2秒前
李健应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
爱笑如蓉完成签到,获得积分10
3秒前
kiminonawa应助科研通管家采纳,获得10
3秒前
3秒前
HOAN应助科研通管家采纳,获得10
3秒前
3秒前
小柠完成签到,获得积分10
3秒前
shero快毕业完成签到 ,获得积分10
3秒前
解语花031发布了新的文献求助10
4秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717887
求助须知:如何正确求助?哪些是违规求助? 5248869
关于积分的说明 15283627
捐赠科研通 4867961
什么是DOI,文献DOI怎么找? 2613978
邀请新用户注册赠送积分活动 1563880
关于科研通互助平台的介绍 1521369