作者
David Lähnemann,Johannes Köster,Ewa Szczurek,Davis J. McCarthy,Stephanie C. Hicks,Mark D. Robinson,Catalina A. Vallejos,Kieran R. Campbell,Niko Beerenwinkel,Ahmed Mahfouz,Luca Pinello,Pavel Skums,Alexandros Stamatakis,Camille Stephan‐Otto Attolini,Samuel Aparício,Jasmijn A. Baaijens,Marleen Balvert,Buys de Barbanson,Antonio Cappuccio,Giacomo Corleone,Bas E. Dutilh,Maria Florescu,Victor Guryev,Rens Holmer,Katharina Jahn,Thamar Jessurun Lobo,Emma M Keizer,Indu Khatri,Szymon M. Kiełbasa,Jan O. Korbel,Alexey Kozlov,Tzu-Hao Kuo,Boudewijn P. F. Lelieveldt,Ion Măndoiu,John C. Marioni,Tobias Marschall,Felix Mölder,Amir Niknejad,Łukasz Rączkowski,Marcel J. T. Reinders,Jeroen de Ridder,Antoine Emmanuel Saliba,Antonios Somarakis,Oliver Stegle,Fabian J. Theis,Huan Yang,Alexander Zelikovsky,Alice C. McHardy,Benjamin J. Raphael,Sohrab P. Shah,Alexander Schönhuth
摘要
Abstract The recent boom in microfluidics and combinatorial indexing strategies, combined with low sequencing costs, has empowered single-cell sequencing technology. Thousands—or even millions—of cells analyzed in a single experiment amount to a data revolution in single-cell biology and pose unique data science problems. Here, we outline eleven challenges that will be central to bringing this emerging field of single-cell data science forward. For each challenge, we highlight motivating research questions, review prior work, and formulate open problems. This compendium is for established researchers, newcomers, and students alike, highlighting interesting and rewarding problems for the coming years.