Deep Spatial–Temporal Model Based Cross-Scene Action Recognition Using Commodity WiFi

计算机科学 人工智能 卷积神经网络 深度学习 数据流挖掘 学习迁移 记忆模型 循环神经网络 机器学习 模式识别(心理学) 钥匙(锁) 人工神经网络 操作系统 计算机安全 共享内存
作者
Biyun Sheng,Fu Xiao,Letian Sha,Lijuan Sun
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:7 (4): 3592-3601 被引量:79
标识
DOI:10.1109/jiot.2020.2973272
摘要

With the popularization of Internet-of-Things (IoT) systems, passive action recognition on channel state information (CSI) has attracted much attention. Most conventional work under the machine-learning framework utilizes handcrafted features (e.g., statistic features) that are unable to sufficiently describe the sequence data and heavily rely on designers' experiences. Therefore, how to automatically learn abundant spatial-temporal information from CSI data is a topic worthy of study. In this article, we propose a deep learning framework that integrates spatial features learned from the convolutional neural network (CNN) into the temporal model multilayer bidirectional long short-term memory (Bi-LSTM). Specifically, CSI streams are segmented into a series of patches, from which spatial features are extracted by our designed CNN structure. Considering long-term dependencies between adjacent sequences, the fully connected layer of CNN for each patch is taken as the Bi-LSTM sequential input to further capture temporal features. Our model is appealing in that it can simultaneously learn temporal dynamics and convolutional perceptual representations. To the best of our knowledge, this is the first work to explore deep spatial-temporal features for CSI-based action recognition. Furthermore, in order to solve the problem that the trained model fully fails with environmental changes, we use the off-the-shelf model as the pretrained model and fine-tune it in the new scenario. The transfer method is able to realize cross-scene action recognition with low computational consumption and satisfactory accuracy. We carry out experiments on indoor data and the experimental results validate the effectiveness of our algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Amie完成签到,获得积分10
2秒前
2秒前
一串数字完成签到,获得积分10
2秒前
3秒前
程若男完成签到,获得积分10
4秒前
灵鹿完成签到,获得积分10
4秒前
11秒前
在水一方应助温偏烫采纳,获得30
12秒前
虚幻井完成签到,获得积分10
13秒前
梨炒栗子完成签到 ,获得积分10
14秒前
summer完成签到 ,获得积分10
14秒前
灵鹿发布了新的文献求助10
15秒前
16秒前
一颗馒头完成签到,获得积分10
18秒前
22秒前
25秒前
Ava应助昵称采纳,获得10
25秒前
FashionBoy应助科研通管家采纳,获得10
30秒前
萧水白应助科研通管家采纳,获得10
31秒前
华仔应助科研通管家采纳,获得10
31秒前
香蕉觅云应助科研通管家采纳,获得10
31秒前
Akim应助科研通管家采纳,获得10
31秒前
乐乐应助科研通管家采纳,获得30
31秒前
QuxiZhang发布了新的文献求助10
31秒前
完美世界应助科研通管家采纳,获得10
31秒前
31秒前
wanci应助科研通管家采纳,获得10
31秒前
ding应助科研通管家采纳,获得10
31秒前
桐桐应助科研通管家采纳,获得10
31秒前
完美世界应助科研通管家采纳,获得10
31秒前
Owen应助科研通管家采纳,获得10
31秒前
乐乐应助科研通管家采纳,获得10
31秒前
完美世界应助科研通管家采纳,获得10
31秒前
爆米花应助科研通管家采纳,获得30
32秒前
32秒前
32秒前
33秒前
杳鸢应助天真彩虹采纳,获得20
33秒前
脑洞疼应助秦子越采纳,获得10
36秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267632
求助须知:如何正确求助?哪些是违规求助? 2907088
关于积分的说明 8340578
捐赠科研通 2577809
什么是DOI,文献DOI怎么找? 1401227
科研通“疑难数据库(出版商)”最低求助积分说明 655005
邀请新用户注册赠送积分活动 633974