Deep Spatial–Temporal Model Based Cross-Scene Action Recognition Using Commodity WiFi

计算机科学 人工智能 卷积神经网络 深度学习 数据流挖掘 学习迁移 记忆模型 循环神经网络 机器学习 模式识别(心理学) 钥匙(锁) 人工神经网络 计算机安全 操作系统 共享内存
作者
Biyun Sheng,Fu Xiao,Letian Sha,Lijuan Sun
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:7 (4): 3592-3601 被引量:82
标识
DOI:10.1109/jiot.2020.2973272
摘要

With the popularization of Internet-of-Things (IoT) systems, passive action recognition on channel state information (CSI) has attracted much attention. Most conventional work under the machine-learning framework utilizes handcrafted features (e.g., statistic features) that are unable to sufficiently describe the sequence data and heavily rely on designers' experiences. Therefore, how to automatically learn abundant spatial-temporal information from CSI data is a topic worthy of study. In this article, we propose a deep learning framework that integrates spatial features learned from the convolutional neural network (CNN) into the temporal model multilayer bidirectional long short-term memory (Bi-LSTM). Specifically, CSI streams are segmented into a series of patches, from which spatial features are extracted by our designed CNN structure. Considering long-term dependencies between adjacent sequences, the fully connected layer of CNN for each patch is taken as the Bi-LSTM sequential input to further capture temporal features. Our model is appealing in that it can simultaneously learn temporal dynamics and convolutional perceptual representations. To the best of our knowledge, this is the first work to explore deep spatial-temporal features for CSI-based action recognition. Furthermore, in order to solve the problem that the trained model fully fails with environmental changes, we use the off-the-shelf model as the pretrained model and fine-tune it in the new scenario. The transfer method is able to realize cross-scene action recognition with low computational consumption and satisfactory accuracy. We carry out experiments on indoor data and the experimental results validate the effectiveness of our algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
许七安发布了新的文献求助30
刚刚
000发布了新的文献求助10
2秒前
完美世界应助Queena采纳,获得20
3秒前
烂番茄完成签到 ,获得积分10
4秒前
光亮的千亦完成签到,获得积分10
4秒前
5秒前
6秒前
7秒前
May完成签到,获得积分10
8秒前
000完成签到,获得积分20
8秒前
GG完成签到,获得积分10
9秒前
小卡应助汪汪采纳,获得10
10秒前
恒星七纪发布了新的文献求助10
10秒前
12we完成签到 ,获得积分10
11秒前
太阳完成签到 ,获得积分10
11秒前
12秒前
123zq完成签到 ,获得积分10
13秒前
13秒前
14秒前
归雁完成签到,获得积分10
14秒前
顾矜应助zjx采纳,获得10
14秒前
小沐发布了新的文献求助10
16秒前
FFFFFFF应助charlins采纳,获得10
17秒前
叶。。。发布了新的文献求助10
17秒前
18秒前
现代的访曼应助天真思雁采纳,获得20
18秒前
ZZL应助苏远山爱吃西红柿采纳,获得20
18秒前
dimensional发布了新的文献求助10
19秒前
19秒前
恒星七纪完成签到,获得积分10
19秒前
20秒前
22秒前
22秒前
和谐悟空完成签到,获得积分10
23秒前
23秒前
w(゚Д゚)w完成签到,获得积分10
24秒前
华仔应助忧郁的猕猴桃采纳,获得10
25秒前
LEMONS应助研究啥采纳,获得10
25秒前
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956458
求助须知:如何正确求助?哪些是违规求助? 3502597
关于积分的说明 11109039
捐赠科研通 3233376
什么是DOI,文献DOI怎么找? 1787315
邀请新用户注册赠送积分活动 870585
科研通“疑难数据库(出版商)”最低求助积分说明 802122