Acoustic emission characteristics of coal failure using automatic speech recognition methodology analysis

Mel倒谱 声发射 压力(语言学) 特征(语言学) 语音识别 计算机科学 模式识别(心理学) 特征提取 声学 工程类 人工智能 物理 语言学 哲学 废物管理
作者
H.L. Wang,Dazhao Song,Ziyou Li,Xueqiu He,Shanlin Lan,Haifeng Guo
出处
期刊:International Journal of Rock Mechanics and Mining Sciences [Elsevier BV]
卷期号:136: 104472-104472 被引量:12
标识
DOI:10.1016/j.ijrmms.2020.104472
摘要

Monitoring acoustic emissions (AE) is an effective way to identify coal deformation and destruction processes. It is therefore of great significance to analyze the characteristics of AE during coal destruction process. This paper applies the Mel frequency cepstrum coefficient (MFCC) approach of automatic speech recognition (ASR) to analyze the characteristics of the AE of coal. The MFCC of AE within 40 ms during the uniaxial compression failure of 55 coal samples was extracted. The results show that the MFCC changes regularly with increasing stress on the coal sample, which changes from the beginning to the end of loading. The ratio of stress to the compressive strength of the coal sample is defined as the stress state of the coal sample and the correlation between MFCC and the stress state of the coal sample is analyzed. MFCC-3 (the third parameter of MFCC) and MFCC-6 (the sixth parameter of MFCC) match the linear change relationship at the relevant stress state. The distribution characteristics of MFCC-3 of 55 coal samples under the same stress state showed that the parameter value is normally distributed under the same stress state. If MFCC-3 is less than -2.481, the probability that stress will reach 90% of its ultimate strength exceeds 93.8%, and the probability of coal failure exceeds 50%. This study shows that the feature extraction method in the field of ASR can be used for the AE feature analysis of the deformation and destruction processes of coal samples, and the extracted MFCC of AE can be used to evaluate their safety state. These results are of great significance to further advance the analysis of the characteristics of the AE of coal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小天发布了新的文献求助30
刚刚
虚拟的鞋垫完成签到,获得积分10
1秒前
小紫完成签到,获得积分10
1秒前
1秒前
SSNN完成签到,获得积分10
1秒前
PWG完成签到,获得积分10
1秒前
1秒前
yin完成签到,获得积分10
2秒前
CHEN完成签到,获得积分10
3秒前
3秒前
3秒前
属虎的华安完成签到,获得积分10
3秒前
赘婿应助塞西尔采纳,获得10
3秒前
SYLH应助果实采纳,获得30
4秒前
科目三应助chyang采纳,获得10
4秒前
zwk完成签到,获得积分10
4秒前
彭于彦祖发布了新的文献求助30
4秒前
4秒前
4秒前
钇铯发布了新的文献求助10
5秒前
史前巨怪完成签到,获得积分10
5秒前
唔西迪西完成签到,获得积分10
5秒前
埃特纳氏完成签到 ,获得积分10
5秒前
木头完成签到,获得积分10
6秒前
ORG完成签到,获得积分10
6秒前
科目三应助CHEN采纳,获得10
6秒前
完美世界应助付品聪采纳,获得10
7秒前
上官若男应助1234采纳,获得10
7秒前
Imstemcell完成签到,获得积分10
7秒前
zyj完成签到,获得积分10
7秒前
小天完成签到,获得积分10
7秒前
北辰完成签到,获得积分10
7秒前
兴奋的铃铛完成签到,获得积分10
8秒前
abletoo发布了新的文献求助30
8秒前
8秒前
okoik完成签到,获得积分10
8秒前
Weichunxue完成签到,获得积分10
8秒前
9秒前
顾矜应助7w采纳,获得30
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016195
求助须知:如何正确求助?哪些是违规求助? 3556252
关于积分的说明 11320524
捐赠科研通 3289166
什么是DOI,文献DOI怎么找? 1812411
邀请新用户注册赠送积分活动 887936
科研通“疑难数据库(出版商)”最低求助积分说明 812058