Machine Learning in Chemistry

领域(数学分析) 计算机科学 光学(聚焦) 人工智能 功能(生物学) 机器学习 数学 生物 进化生物学 光学 物理 数学分析
作者
Jon Paul Janet,Heather J. Kulik
出处
期刊:ACS in focus 被引量:55
标识
DOI:10.1021/acs.infocus.7e4001
摘要

Recent advances in machine learning or artificial intelligence for vision and natural language processing that have enabled the development of new technologies such as personal assistants or self-driving cars have brought machine learning and artificial intelligence to the forefront of popular culture. The accumulation of these algorithmic advances along with the increasing availability of large data sets and readily available high performance computing has played an important role in bringing machine learning applications to such a wide range of disciplines. Given the emphasis in the chemical sciences on the relationship between structure and function, whether in biochemistry or in materials chemistry, adoption of machine learning by chemists. Machine Learning in Chemistry focuses on the following to launch your understanding of this highly relevant topic: Topics most relevant to chemical sciences are the focus. Focus on concepts rather than technical details. Comprehensive referencing provides sources to go to for more technical details. Key details about methods that underlie machine learning (not easy, but important to understand the strengths as well as the limitations of these methods and to identify where domain knowledge can be most readily applied. Familiarity with basic single variable calculus and in linear algebra will be helpful although we have provided step-by-step derivations where they are important
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
末末完成签到,获得积分10
刚刚
Hello应助科研通管家采纳,获得10
1秒前
1秒前
华仔应助科研通管家采纳,获得30
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
zho应助科研通管家采纳,获得10
2秒前
可乐应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
不配.应助LL采纳,获得10
2秒前
上官若男应助3kou采纳,获得10
3秒前
不配.应助yao chen采纳,获得10
5秒前
8秒前
小梦完成签到,获得积分10
8秒前
顾矜应助zty采纳,获得10
8秒前
小马完成签到,获得积分10
9秒前
李卓航发布了新的文献求助10
10秒前
隐形夏旋完成签到,获得积分10
11秒前
11秒前
changjing完成签到,获得积分10
15秒前
stephen_wang完成签到,获得积分10
16秒前
18秒前
思源应助小楼采纳,获得10
18秒前
lailai完成签到 ,获得积分10
18秒前
zwenng完成签到,获得积分10
18秒前
Wenpandaen发布了新的文献求助10
18秒前
fei完成签到,获得积分10
19秒前
20秒前
独特背包完成签到,获得积分10
20秒前
zzh319发布了新的文献求助10
21秒前
23秒前
开心的安雁完成签到,获得积分10
25秒前
不配.应助123321采纳,获得100
25秒前
26秒前
轩辕唯雪发布了新的文献求助10
27秒前
香蕉觅云应助孔院采纳,获得10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134935
求助须知:如何正确求助?哪些是违规求助? 2785802
关于积分的说明 7774295
捐赠科研通 2441699
什么是DOI,文献DOI怎么找? 1298093
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825