头孢唑林
尼奥体
金黄色葡萄球菌
微生物学
生物膜
Zeta电位
抗生素
医学
材料科学
抗菌剂
化学
细菌
纳米颗粒
生物
小泡
纳米技术
膜
生物化学
遗传学
作者
Mahdi Zafari,Mahsa Adibi,Mohsen Chiani,Negin Bolourchi,Seyed Mahmoud Barzi,Mohammad Sadegh Shams Nosrati,Zeinab Bahari,Parisa Shirvani,Kambiz Akbari Noghabi,Mojgan Ebadi,Nazanin Rahimirad,Morvarid Shafiei
标识
DOI:10.1088/1748-605x/abc7f2
摘要
The ability of biofilm formation in methicillin-resistant Staphylococcus aureus (MRSA) causes significant mortality and morbidity in wound infections. Nanoparticles because of the drug concentration increment at the point of contact of nanoparticles and bacteria, and slower release of the drug at the desired location are considered as proper tools to overcome the therapeutic problem of antimicrobial-resistant infections. This study was aimed to evaluate the anti-biofilm activity of cefazolin-loaded nanoparticles against MRSA isolates. The 27 clinical isolates of MRSA were collected from patients with pressure sores and diabetic ulcers referred to Loghman Hospital in Tehran-Iran. MRSA isolates were detected by polymerase chain reaction (PCR) and biochemical tests. Cefazolin-loaded niosome was synthesized using the thin-film hydration method and were characterized by zeta potential measurement and transmission electron microscopy (TEM). The round-shaped cefazolin-loaded niosomes had a diameter of 100 nm and a -63 mV zeta potential. The cefazolin-containing niosomes removed 1, 3, and 5 d old biofilms at the concentration of 128 µg ml
科研通智能强力驱动
Strongly Powered by AbleSci AI