Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance

山崩 机器学习 计算机科学 人工智能 算法 数据挖掘 工程类 岩土工程
作者
Abdelaziz Merghadi,Ali P. Yunus,Jie Dou,J. Whiteley,Binh Thai Pham,Dieu Tien Bui,Ram Avtar,Abderrahmane Boumezbeur
出处
期刊:Earth-Science Reviews [Elsevier BV]
卷期号:207: 103225-103225 被引量:793
标识
DOI:10.1016/j.earscirev.2020.103225
摘要

Landslides are one of the catastrophic natural hazards that occur in mountainous areas, leading to loss of life, damage to properties, and economic disruption. Landslide susceptibility models prepared in a Geographic Information System (GIS) integrated environment can be key for formulating disaster prevention measures and mitigating future risk. The accuracy and precision of susceptibility models is evolving rapidly from opinion-driven models and statistical learning toward increased use of machine learning techniques. Critical reviews on opinion-driven models and statistical learning in landslide susceptibility mapping have been published, but an overview of current machine learning models for landslide susceptibility studies, including background information on their operation, implementation, and performance is currently lacking. Here, we present an overview of the most popular machine learning techniques available for landslide susceptibility studies. We find that only a handful of researchers use machine learning techniques in landslide susceptibility mapping studies. Therefore, we present the architecture of various Machine Learning (ML) algorithms in plain language, so as to be understandable to a broad range of geoscientists. Furthermore, a comprehensive study comparing the performance of various ML algorithms is absent from the current literature, making an assessment of comparative performance and predictive capabilities difficult. We therefore undertake an extensive analysis and comparison between different ML techniques using a case study from Algeria. We summarize and discuss the algorithm's accuracies, advantages and limitations using a range of evaluation criteria. We note that tree-based ensemble algorithms achieve excellent results compared to other machine learning algorithms and that the Random Forest algorithm offers robust performance for accurate landslide susceptibility mapping with only a small number of adjustments required before training the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑点低雅琴完成签到,获得积分20
1秒前
minghanl完成签到,获得积分10
1秒前
肉卷完成签到 ,获得积分10
1秒前
云淡风轻发布了新的文献求助10
1秒前
韩韩韩完成签到,获得积分10
1秒前
2秒前
2秒前
阿文发布了新的文献求助10
2秒前
kzf丶bryant发布了新的文献求助10
2秒前
3秒前
小夏饭桶发布了新的文献求助10
3秒前
5秒前
打打应助默默成风采纳,获得10
5秒前
所所应助炙热的爆米花采纳,获得30
6秒前
Zephr完成签到 ,获得积分10
6秒前
SucceedIn完成签到,获得积分10
7秒前
冯冯发布了新的文献求助10
8秒前
某人金发布了新的文献求助10
8秒前
8秒前
9秒前
yanyanyan发布了新的文献求助10
9秒前
9秒前
旋转鸡爪子完成签到,获得积分10
10秒前
mumu完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
lin发布了新的文献求助10
12秒前
12秒前
13秒前
lee发布了新的文献求助10
13秒前
SSS完成签到 ,获得积分10
13秒前
小二郎应助你好采纳,获得10
13秒前
KK发布了新的文献求助10
13秒前
科研通AI5应助hyxu678采纳,获得10
13秒前
13秒前
科研通AI5应助风轩轩采纳,获得10
14秒前
14秒前
ZWL001发布了新的文献求助10
15秒前
天下一番发布了新的文献求助10
15秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734729
求助须知:如何正确求助?哪些是违规求助? 3278704
关于积分的说明 10010684
捐赠科研通 2995337
什么是DOI,文献DOI怎么找? 1643335
邀请新用户注册赠送积分活动 781114
科研通“疑难数据库(出版商)”最低求助积分说明 749249