钙钛矿(结构)
光激发
介观物理学
材料科学
电子
瞬态(计算机编程)
光致发光
光电子学
载流子
凝聚态物理
化学
物理
原子物理学
结晶学
计算机科学
操作系统
量子力学
激发态
作者
Rahmat Hidayat,Adhita Asma Nurunnizar,Alvin Fariz,Herman,Erlyta Septa Rosa,Shobih Shobih,Tomohisa Oizumi,Akihiko Fujii,Masanori Ozaki
标识
DOI:10.1038/s41598-020-74603-x
摘要
This report shows that, by using simple transient photovoltage (TPV) measurements, we can reveal a significant correlation between the TPV decay characteristics and the performance of these perovskite solar cells. TPV decay seems to be composed of a rising part in a short interval after photoexcitation and a long decaying part that extends up to tens of milliseconds. These decay behaviors look different depending on the mesoscopic structures and the perovskite morphology formed therein, as seen from their Scanning Electron Microcopy images and X-ray diffraction patterns. The decay part can be fitted with a three-exponential decay, which reflects different kinetics of electrons in the perovskite/TiO2 layer. On the other hand, the rising part must be fit by a decay equation derived by employing the convolution theorem, where the rising part can be assigned to the electron transport process inside the perovskite layer and the decaying part can be assigned to electron back-transfer. The characteristics can be then understood by considering the effect of crystal defects and trap states in the perovskite grains and perovskite interface with its transport layer, which is TiO2 in this study. Although the TPV decay occurs in a time range much longer than the primary process of photoexcitation as commonly observed in transient photoluminescence spectroscopy, the processes involved in this TPV strongly correlates with the performance of these perovskite solar cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI