亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accurate Prediction of Gene Mutations with Flow Cytometry Immune-Phenotyping By Machine Learning Algorithm

免疫分型 净现值1 CEBPA公司 基因突变 人工智能 计算机科学 基因 计算生物学 突变 生物 流式细胞术 遗传学 染色体 核型
作者
Bor‐Sheng Ko,Yufen Wang,Jeng-Lin Li,Hsin‐An Hou,Wen‐Chien Chou,Hwei‐Fang Tien,Ting‐Yu Chang,Chi-Chun Lee
出处
期刊:Blood [Elsevier BV]
卷期号:136 (Supplement 1): 7-8 被引量:2
标识
DOI:10.1182/blood-2020-139623
摘要

Introduction Identification of gene mutation status prior treatment has improved our capability in risk stratifying acute myeloid leukemia (AML) patients greatly, but it is really a labor-exhausting work to identify these mutations. In this this study, we hypothesize immunophenotyping could predict gene mutation and we aim to develop machine learning algorithms that could predict the AML gene mutation status with the immunophenotype by clinical flow cytometry. Method Retrospective clinical data of patients with AML, including demographic (age & gender), molecular genetics, cytogenetics as well as flow cytometry (FC) data at National Taiwan University Hospital were collected. A total of 529 newly diagnosed de novo AML from 2009 to 2019 enrolled this study. The median age at diagnosis was 58 years (Table 1). In total, 428 NPM1, 415 FLT3, 331 CEBPA and 338 RUNX1 gene testing results and a total of 529 initial diagnostic FC data from these patients were used in developing the gene mutation prediction models. Each FC data sample contained 100,000 cells acquired on FACSCantoII machine 6 fluorescent channels with multiple fluorescent markers. The markers measured are listed in Table 2. There were 19 combinations of markers and fluorescent channels which were served as feature inputs of the machine learning framework. Our proposed machine learning framework can be divided as a phenotype representation learning paradigm and a classification model. To derive the phenotype representation, we trained a multivariate Gaussian Mixture Model (GMM) on the 19-dimension FC data to capture the training data distribution and characteristics in a probabilistic unsupervised manner. Then, a Fisher-scoring method was used to vectorize each sample as a high dimensional representation via differential computation in terms of the learned GMM parameters. This Fisher vectorization method transformed samples to a high dimensional feature space as phenotype vectors. We performed analysis of variance (ANOVA)-based feature selection on these representations which were finally fed into the support vector machine (SVM) classifier. To alleviate the negative effects of imbalance classes in gene mutation identification tasks, we applied synthetic minority oversampling technique (SMOTE) algorithm which augmented the minority class by interpolating samples near support vectors. We train independent SVM models to detect the occurrences of the four gene mutation. The algorithm is evaluated by randomly divided 5-fold cross validation which separates 80% data for training and 20% for testing. Results This gene mutation rate of this cohort for NPM1, FLT3, CEBPA and RUNX1 were 22.2% (95/428), 25.1% (104/415), 20.2% (67/331), and 13.6% (46/338), respectively. The average accuracies (ACC) of the prediction model performance for NPM1, FLT3, CEBPA and RUNX1 were 82.6%, 76.3%, 84.2% and 84.1%, respectively, whereas the area under the ROC curve (AUC) were 77.9%, 63.4%, 80.7% and 67.7%, respectively (Table. 3). Conclusions We demonstrated the potential of the correlation of recurrent AML gene mutation status with immunophenotype of AML through our preliminary gene mutation prediction model. Further study with larger cohorts followed by external validation are needed to further evaluate the feasibility of using machine learning based algorithm as one of triage tools to support physicians in aggressive AML clinical decision before receiving molecular genetic reports. Disclosures Ko: Roche: Honoraria.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跃毒娘发布了新的文献求助10
5秒前
13秒前
量子星尘发布了新的文献求助10
35秒前
50秒前
yx_cheng应助科研通管家采纳,获得10
59秒前
Ava应助科研通管家采纳,获得10
59秒前
yx_cheng应助科研通管家采纳,获得10
59秒前
yx_cheng应助科研通管家采纳,获得10
59秒前
温柔亦寒完成签到,获得积分10
1分钟前
1分钟前
RAIN发布了新的文献求助10
2分钟前
小马甲应助顺利的尔芙采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
jjy完成签到 ,获得积分10
2分钟前
所所应助RAIN采纳,获得10
2分钟前
2分钟前
烟花应助科研通管家采纳,获得10
3分钟前
顺利的尔芙完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
思源应助风中的雅柏采纳,获得10
3分钟前
3分钟前
3分钟前
mama完成签到 ,获得积分10
3分钟前
lixuebin完成签到 ,获得积分10
4分钟前
星际舟完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Ava应助顺利的尔芙采纳,获得10
4分钟前
情怀应助科研通管家采纳,获得10
4分钟前
充电宝应助科研通管家采纳,获得10
4分钟前
4分钟前
丝垚完成签到 ,获得积分10
5分钟前
Akim应助无风采纳,获得10
5分钟前
孙雪君完成签到,获得积分10
6分钟前
孙雪君发布了新的文献求助10
6分钟前
xiaolang2004完成签到,获得积分10
6分钟前
无花果应助lu采纳,获得10
6分钟前
无用的老董西完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
无风完成签到 ,获得积分10
6分钟前
nickel完成签到,获得积分10
6分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008289
求助须知:如何正确求助?哪些是违规求助? 3548035
关于积分的说明 11298654
捐赠科研通 3282878
什么是DOI,文献DOI怎么找? 1810249
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188