Regression-Based Line Detection Network for Delineation of Largely Deformed Brain Midline

计算机科学 地标 中线偏移 人工智能 直线(几何图形) 回归 解剖学标志 模式识别(心理学) 计算机视觉 医学 解剖 统计 计算机断层摄影术 放射科 数学 几何学
作者
Hao Wei,Xiangyu Tang,Minqing Zhang,Qingfeng Li,Xiaodan Xing,Xiang Zhou,Xue Zhang,Wenzhen Zhu,Zailiang Chen,Feng Shi
出处
期刊:Lecture Notes in Computer Science 卷期号:: 839-847 被引量:4
标识
DOI:10.1007/978-3-030-32248-9_93
摘要

Brain midline shift is often caused by various clinical conditions such as high intracranial pressure, which can be deadly. To facilitate clinical evaluation, automated methods have been proposed to classify whether midline shift is severe or not, e.g., larger than 5 mm away from the ideal midline. There are only limited methods using landmark or symmetry, attempting to provide more intuitive results such as midline delineation. However, landmark- or symmetry-based methods could be easily affected by anatomical variability and large brain deformations. In this study, we formulated the midline delineation as a skeleton extraction task and proposed a novel regression-based line detection network (RLDN) for the robust midline delineation especially in largely deformed brains. Basically, the proposed method includes three parts: (1) multi-scale line detection, (2) weighted line integration, and (3) regression-based refinement. The first two parts were used to capture high-level semantic and low-level detailed information to extract deformed midline, while the last part was utilized to regress more accurate midline positions. We validated the RLDN on 100 training and 28 testing subjects with a mean midline shift of 7 mm and the maximum shift of 16 mm (induced by hemorrhage). Experimental results show that our proposed method achieves state-of-the-art accuracy with a mean line difference of $$1.17\pm 0.72$$ mm and F1-score of 0.78 from manual delineations. Our proposed robust midline delineation method is also beneficial for other cases such as midline deformation from tumor, traumatic brain injury, and abscess.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妙脆角完成签到,获得积分10
刚刚
1秒前
英姑应助wangwang采纳,获得10
1秒前
可爱花生完成签到,获得积分10
2秒前
2秒前
乐乐应助冯123采纳,获得10
2秒前
苏紫梗桔完成签到 ,获得积分10
2秒前
dd完成签到,获得积分10
2秒前
Clover完成签到,获得积分10
3秒前
Yolo发布了新的文献求助10
3秒前
丰知然应助ZZzz采纳,获得20
3秒前
从容芮应助少年采纳,获得30
4秒前
SCI发布了新的文献求助10
4秒前
123669完成签到,获得积分10
4秒前
思苇完成签到,获得积分10
4秒前
上官若男应助bofu采纳,获得10
4秒前
4秒前
zhan完成签到,获得积分20
4秒前
悦耳晓露完成签到,获得积分10
5秒前
ww关闭了ww文献求助
5秒前
Lwxbb完成签到,获得积分10
5秒前
大方百招完成签到,获得积分10
6秒前
可爱花生发布了新的文献求助20
6秒前
橙子完成签到 ,获得积分10
6秒前
7秒前
xiang发布了新的文献求助10
7秒前
DK发布了新的文献求助30
7秒前
一心完成签到,获得积分10
9秒前
Billy应助悦耳晓露采纳,获得30
9秒前
紫荆完成签到,获得积分10
10秒前
俊秀的思山完成签到,获得积分10
10秒前
han发布了新的文献求助10
10秒前
王王完成签到,获得积分10
10秒前
mieheihei完成签到,获得积分10
10秒前
12秒前
13秒前
少年完成签到,获得积分20
14秒前
大个应助bofu采纳,获得30
14秒前
嘤嘤怪应助chen_hebo采纳,获得10
15秒前
xiiin发布了新的文献求助10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303771
求助须知:如何正确求助?哪些是违规求助? 2937960
关于积分的说明 8485658
捐赠科研通 2611928
什么是DOI,文献DOI怎么找? 1426406
科研通“疑难数据库(出版商)”最低求助积分说明 662619
邀请新用户注册赠送积分活动 647170