亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A multi-modality radiomics-based model for predicting recurrence in non-small cell lung cancer

无线电技术 医学 一致性 队列 肺癌 阶段(地层学) 肿瘤科 医学影像学 癌症 放射科 人工智能 内科学 列线图 计算机科学 生物 古生物学
作者
Jaryd R. Christie,Mohamed Abdelrazek,Pencilla Lang,Sarah A. Mattonen
标识
DOI:10.1117/12.2586233
摘要

Non-small cell lung cancer (NSCLC) is one of the leading causes of death worldwide. Medical imaging is used to determine cancer staging; however, these images may hold additional information which could be utilized to aid in outcome prediction. A multi-modality radiomics approach incorporating quantitative and qualitative features from the tumor and its surrounding regions, along with clinical features, has yet to be explored. Therefore, we hypothesize that a model containing CT and PET radiomic features, in addition to clinical and qualitative features, has the potential improve risk-stratification of NSCLC patients better than cancer stage alone. Our dataset consisted of 135 NSCLC patients (training: n=94, testing: n=41) who underwent surgical resection. Each region of interest was segmented using a semi-automatic approach on both the pre-treatment CT and PET images. Radiomic features were extracted using the Quantitative Image Feature Engine. A total of 1030 features were extracted including clinical, qualitative, and radiomic features. LASSO regression was used to identify the top features to predict time to recurrence in the training cohort and the model was evaluated in the testing cohort. A total of nine features were selected, including two clinical, one CT, and six PET radiomic features. The model achieved a concordance of 0.81 in the training cohort, which was validated in the testing cohort (concordance=0.79) and outperformed stage alone (concordances=0.68-0.69). This model has the potential to assist physicians in risk-stratifying patients with NSCLC and could be used to identify patients that may benefit from more aggressive or personalized treatment options.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
安静发布了新的文献求助10
7秒前
Yu发布了新的文献求助10
7秒前
11秒前
Yu完成签到,获得积分10
14秒前
zhencheng发布了新的文献求助10
15秒前
FashionBoy应助安静采纳,获得10
16秒前
wls关闭了wls文献求助
19秒前
碧蓝世界完成签到 ,获得积分10
28秒前
30秒前
CodeCraft应助zhencheng采纳,获得10
31秒前
机灵的成协完成签到,获得积分10
39秒前
杳鸢应助keizai采纳,获得30
47秒前
1分钟前
blue2021发布了新的文献求助10
1分钟前
999完成签到,获得积分10
1分钟前
我是老大应助blue2021采纳,获得10
1分钟前
1分钟前
隐形曼青应助Lee采纳,获得10
1分钟前
隐形曼青应助君倾侧采纳,获得10
1分钟前
1分钟前
zs完成签到 ,获得积分10
1分钟前
1分钟前
一方通行完成签到,获得积分10
1分钟前
1分钟前
Lee发布了新的文献求助10
1分钟前
1分钟前
Lee完成签到,获得积分10
1分钟前
薄荷小姐完成签到 ,获得积分10
1分钟前
2分钟前
乐乐应助机灵的成协采纳,获得10
2分钟前
未名水完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
萝卜完成签到 ,获得积分10
2分钟前
3分钟前
keizai完成签到,获得积分20
3分钟前
3分钟前
3分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311055
求助须知:如何正确求助?哪些是违规求助? 2943900
关于积分的说明 8516683
捐赠科研通 2619240
什么是DOI,文献DOI怎么找? 1432141
科研通“疑难数据库(出版商)”最低求助积分说明 664519
邀请新用户注册赠送积分活动 649810