Developing low-cost and high-capacity anode materials is one of the momentous issues in lithium-ion batteries (LIBs). In this study, we propose a facile one-pot hydrothermal strategy to synthesize silicon-doped [email protected] graphene oxide ([email protected]) composites, which integrate the advantages of hybridization and doping engineering as novel anodes for LIBs. The Si-FeOOH nanorods are uniformly grown on the conductive rGO sheets with the formation of Fe−O−C bonding at interfaces. Results demonstrate that the doping of Si can effectively suppress the aggregation of active nanoparticles, facilitate Li+ diffusion, and promote the conversion reaction of FeOOH. As a result, the optimized [email protected] composite manifests high reversibility (1370.5 mAh g−1 at 0.1 A g−1 over 200 cycles), outstanding rate capability (690.4 mAh g−1 at 1 A g−1, 599.2 mAh g−1 at 2 A g−1) and excellent long-term cyclability (920.1 mAh g−1 at 0.5 A g−1 and 612.7 mAh g−1 at 1 A g−1 after 380 cycles). The simple fabrication strategy and superior electrochemical performance indicate that this novel [email protected] composite shows a great application prospect as anode material for advanced LIBs.