Interpreting and Improving Adversarial Robustness of Deep Neural Networks With Neuron Sensitivity

对抗制 可解释性 稳健性(进化) 计算机科学 深层神经网络 人工智能 人工神经网络 机器学习 深度学习 生物化学 基因 化学
作者
Chongzhi Zhang,Aishan Liu,Xianglong Liu,Yitao Xu,Hang Yu,Yuqing Ma,Tianlin Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 1291-1304 被引量:38
标识
DOI:10.1109/tip.2020.3042083
摘要

Deep neural networks (DNNs) are vulnerable to adversarial examples where inputs with imperceptible perturbations mislead DNNs to incorrect results. Despite the potential risk they bring, adversarial examples are also valuable for providing insights into the weakness and blind-spots of DNNs. Thus, the interpretability of a DNN in the adversarial setting aims to explain the rationale behind its decision-making process and makes deeper understanding which results in better practical applications. To address this issue, we try to explain adversarial robustness for deep models from a new perspective of neuron sensitivity which is measured by neuron behavior variation intensity against benign and adversarial examples. In this paper, we first draw the close connection between adversarial robustness and neuron sensitivities, as sensitive neurons make the most non-trivial contributions to model predictions in the adversarial setting. Based on that, we further propose to improve adversarial robustness by stabilizing the behaviors of sensitive neurons. Moreover, we demonstrate that state-of-the-art adversarial training methods improve model robustness by reducing neuron sensitivities, which in turn confirms the strong connections between adversarial robustness and neuron sensitivity. Extensive experiments on various datasets demonstrate that our algorithm effectively achieves excellent results. To the best of our knowledge, we are the first to study adversarial robustness using neuron sensitivities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Hehhhh完成签到,获得积分10
3秒前
潇洒的诗桃应助开心采纳,获得10
4秒前
hsj发布了新的文献求助10
4秒前
天卢完成签到 ,获得积分10
6秒前
小星星完成签到 ,获得积分10
6秒前
沙沙完成签到 ,获得积分10
6秒前
研友_8DAv0L完成签到,获得积分10
6秒前
风趣的灵枫完成签到 ,获得积分10
6秒前
青青河边草完成签到,获得积分10
8秒前
白鸽应助小王子采纳,获得10
11秒前
11秒前
12秒前
hsj完成签到,获得积分20
13秒前
我不会科研关注了科研通微信公众号
14秒前
百浪多息发布了新的文献求助10
16秒前
温暖霸发布了新的文献求助10
16秒前
19秒前
李加威完成签到 ,获得积分10
19秒前
wangayting发布了新的文献求助30
20秒前
21秒前
timemaster666完成签到,获得积分10
21秒前
临床医学研究中心完成签到,获得积分20
21秒前
24秒前
刻苦的元风完成签到 ,获得积分10
24秒前
熊泰山完成签到 ,获得积分10
26秒前
情怀应助英俊的筝采纳,获得10
26秒前
Sudon完成签到 ,获得积分10
27秒前
青山落日秋月春风完成签到,获得积分10
29秒前
29秒前
July完成签到,获得积分10
30秒前
领导范儿应助百浪多息采纳,获得10
31秒前
iii完成签到 ,获得积分10
31秒前
哲痞子完成签到,获得积分10
35秒前
35秒前
大胆胡萝卜完成签到,获得积分10
36秒前
36秒前
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137539
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7787054
捐赠科研通 2444818
什么是DOI,文献DOI怎么找? 1300043
科研通“疑难数据库(出版商)”最低求助积分说明 625784
版权声明 601023