Personalized Knowledge Recommendation Based on Knowledge Graph in Petroleum Exploration and Development

计算机科学 协同过滤 聚类分析 知识图 图形 领域知识 推荐系统 冷启动(汽车) 情报检索 数据挖掘 知识抽取 人工智能 理论计算机科学 工程类 航空航天工程
作者
Gang Huang,Mei Yuan,Chunsheng Li,Yonghe Wei
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:34 (10): 2059033-2059033 被引量:6
标识
DOI:10.1142/s0218001420590338
摘要

Firstly, this paper designs the process of personalized recommendation method based on knowledge graph, and constructs user interest model. Second, the traditional personalized recommendation algorithms are studied and their advantages and disadvantages are analyzed. Finally, this paper focuses on the combination of knowledge graph and collaborative filtering recommendation algorithm. They are effective to solve the problem where [Formula: see text] value is difficult to be determined in the clustering process of traditional collaborative filtering recommendation algorithm as well as data sparsity and cold start, utilizing the ample semantic relation in knowledge graph. If we use RDF data, which is distributed by the E and P (Exploration and Development) database based on the petroleum E and P, to verify the validity of the algorithm, the result shows that collaborative filtering algorithm based on knowledge graph can build the users’ potential intentions by knowledge graph. It is enlightening to query the information of users. In this way, it expands the mind of users to accomplish the goal of recommendation. In this paper, a collaborative filtering algorithm based on domain knowledge atlas is proposed. By using knowledge graph to effectively classify and describe domain knowledge, the problems are solved including clustering and the cold start in traditional collaborative filtering recommendation algorithm. The better recommendation effect has been achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
回来发布了新的文献求助10
刚刚
1秒前
脑洞疼应助甜甜映菡采纳,获得10
1秒前
WYL发布了新的文献求助10
1秒前
王哈哈完成签到 ,获得积分10
1秒前
HWJ完成签到,获得积分10
2秒前
负责蜜蜂完成签到,获得积分20
2秒前
2秒前
wzgkeyantong发布了新的文献求助10
3秒前
动人的书雪完成签到,获得积分20
4秒前
er发布了新的文献求助10
4秒前
5秒前
cream发布了新的文献求助10
6秒前
zly发布了新的文献求助10
6秒前
华仔应助椿上春树采纳,获得10
6秒前
啦嗖儿完成签到,获得积分10
6秒前
搜集达人应助echo采纳,获得10
7秒前
7秒前
瓦尔迪完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
10秒前
10秒前
万能图书馆应助俭朴老五采纳,获得10
11秒前
11发布了新的文献求助10
12秒前
李健应助grmqgq采纳,获得10
12秒前
Jasper应助Xx采纳,获得10
12秒前
北城发布了新的文献求助10
13秒前
0gg发布了新的文献求助10
13秒前
共享精神应助er采纳,获得10
15秒前
yoesyte完成签到,获得积分10
15秒前
Shaw发布了新的文献求助10
15秒前
糊涂涂完成签到,获得积分10
16秒前
17秒前
坚定岂愈发布了新的文献求助10
18秒前
bkagyin应助乐乐666采纳,获得10
19秒前
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148410
求助须知:如何正确求助?哪些是违规求助? 2799545
关于积分的说明 7835454
捐赠科研通 2456868
什么是DOI,文献DOI怎么找? 1307446
科研通“疑难数据库(出版商)”最低求助积分说明 628207
版权声明 601655