Personalized Knowledge Recommendation Based on Knowledge Graph in Petroleum Exploration and Development

计算机科学 协同过滤 聚类分析 知识图 图形 领域知识 推荐系统 冷启动(汽车) 情报检索 数据挖掘 知识抽取 人工智能 理论计算机科学 工程类 航空航天工程
作者
Gang Huang,Mei Yuan,Chunsheng Li,Yonghe Wei
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:34 (10): 2059033-2059033 被引量:6
标识
DOI:10.1142/s0218001420590338
摘要

Firstly, this paper designs the process of personalized recommendation method based on knowledge graph, and constructs user interest model. Second, the traditional personalized recommendation algorithms are studied and their advantages and disadvantages are analyzed. Finally, this paper focuses on the combination of knowledge graph and collaborative filtering recommendation algorithm. They are effective to solve the problem where [Formula: see text] value is difficult to be determined in the clustering process of traditional collaborative filtering recommendation algorithm as well as data sparsity and cold start, utilizing the ample semantic relation in knowledge graph. If we use RDF data, which is distributed by the E and P (Exploration and Development) database based on the petroleum E and P, to verify the validity of the algorithm, the result shows that collaborative filtering algorithm based on knowledge graph can build the users’ potential intentions by knowledge graph. It is enlightening to query the information of users. In this way, it expands the mind of users to accomplish the goal of recommendation. In this paper, a collaborative filtering algorithm based on domain knowledge atlas is proposed. By using knowledge graph to effectively classify and describe domain knowledge, the problems are solved including clustering and the cold start in traditional collaborative filtering recommendation algorithm. The better recommendation effect has been achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
111发布了新的文献求助30
1秒前
1秒前
1秒前
归尘应助LLL采纳,获得10
1秒前
李爱国应助cc2064采纳,获得10
1秒前
xiaxianong发布了新的文献求助10
1秒前
Azyyyy发布了新的文献求助10
1秒前
77777完成签到,获得积分10
2秒前
dahuihui发布了新的文献求助10
3秒前
3秒前
小蘑菇应助偷乐采纳,获得10
3秒前
娇气的笑蓝完成签到,获得积分10
3秒前
lcj发布了新的文献求助10
4秒前
Kate完成签到,获得积分10
5秒前
Ava应助假装有昵称采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
霸气凝云完成签到 ,获得积分10
5秒前
狼王发布了新的文献求助10
5秒前
项初蝶完成签到 ,获得积分10
5秒前
撒上大声说完成签到,获得积分10
5秒前
ZZDXXX完成签到,获得积分10
6秒前
6秒前
sdasd发布了新的文献求助10
6秒前
Orange应助奋斗老鼠采纳,获得10
6秒前
JAJ完成签到 ,获得积分10
6秒前
自由冬亦完成签到,获得积分10
7秒前
无糖零脂发布了新的文献求助10
7秒前
7秒前
爆米花应助peace采纳,获得10
7秒前
开心的纸鹤完成签到,获得积分10
8秒前
郭盾发布了新的文献求助30
8秒前
8秒前
雨兔儿完成签到,获得积分10
9秒前
脑洞疼应助xiaxianong采纳,获得10
9秒前
从容莫茗发布了新的文献求助10
9秒前
9秒前
Lcccccc完成签到,获得积分10
9秒前
eves给eves的求助进行了留言
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582