亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Scale Context-Guided Deep Network for Automated Lesion Segmentation With Endoscopy Images of Gastrointestinal Tract

分割 计算机科学 人工智能 背景(考古学) 特征(语言学) 联营 子网 图像分割 模式识别(心理学) 卷积神经网络 深度学习 计算机视觉 古生物学 语言学 哲学 计算机安全 生物
作者
Shuai Wang,Yang Cong,Hancan Zhu,Xianyi Chen,Liangqiong Qu,Huijie Fan,Qiang Zhang,Mingxia Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (2): 514-525 被引量:94
标识
DOI:10.1109/jbhi.2020.2997760
摘要

Accurate lesion segmentation based on endoscopy images is a fundamental task for the automated diagnosis of gastrointestinal tract (GI Tract) diseases. Previous studies usually use hand-crafted features for representing endoscopy images, while feature definition and lesion segmentation are treated as two standalone tasks. Due to the possible heterogeneity between features and segmentation models, these methods often result in sub-optimal performance. Several fully convolutional networks have been recently developed to jointly perform feature learning and model training for GI Tract disease diagnosis. However, they generally ignore local spatial details of endoscopy images, as down-sampling operations (e.g., pooling and convolutional striding) may result in irreversible loss of image spatial information. To this end, we propose a multi-scale context-guided deep network (MCNet) for end-to-end lesion segmentation of endoscopy images in GI Tract, where both global and local contexts are captured as guidance for model training. Specifically, one global subnetwork is designed to extract the global structure and high-level semantic context of each input image. Then we further design two cascaded local subnetworks based on output feature maps of the global subnetwork, aiming to capture both local appearance information and relatively high-level semantic information in a multi-scale manner. Those feature maps learned by three subnetworks are further fused for the subsequent task of lesion segmentation. We have evaluated the proposed MCNet on 1,310 endoscopy images from the public EndoVis-Ab and CVC-ClinicDB datasets for abnormal segmentation and polyp segmentation, respectively. Experimental results demonstrate that MCNet achieves [Formula: see text] and [Formula: see text] mean intersection over union (mIoU) on two datasets, respectively, outperforming several state-of-the-art approaches in automated lesion segmentation with endoscopy images of GI Tract.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
afleve完成签到,获得积分10
16秒前
斯寜给花花的求助进行了留言
20秒前
30秒前
35秒前
45秒前
灰灰一定行完成签到,获得积分10
46秒前
凯文完成签到 ,获得积分10
49秒前
cc完成签到,获得积分10
50秒前
58秒前
艾斯完成签到 ,获得积分10
1分钟前
1分钟前
大个应助傲娇的觅翠采纳,获得10
1分钟前
麦克白的奥利奥完成签到,获得积分10
1分钟前
精神稳定发布了新的文献求助10
1分钟前
晚秋北斗完成签到 ,获得积分10
1分钟前
甜甜绮兰完成签到 ,获得积分10
1分钟前
Vision820发布了新的文献求助10
1分钟前
1分钟前
DrLee完成签到,获得积分10
1分钟前
1分钟前
平淡道天完成签到,获得积分10
1分钟前
1分钟前
agent完成签到 ,获得积分10
1分钟前
iceink发布了新的文献求助10
2分钟前
沉静河马完成签到 ,获得积分10
2分钟前
pp‘s完成签到 ,获得积分10
2分钟前
针地很不戳完成签到,获得积分10
2分钟前
NiceSunnyDay完成签到 ,获得积分10
2分钟前
2分钟前
赘婿应助天真咖啡豆采纳,获得10
2分钟前
一路微笑完成签到,获得积分10
3分钟前
俊逸的刺猬完成签到,获得积分10
3分钟前
3分钟前
英姑应助WINKS采纳,获得10
3分钟前
3分钟前
yangzai发布了新的文献求助10
3分钟前
3分钟前
科研通AI5应助科研通管家采纳,获得30
3分钟前
3分钟前
3分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3773648
求助须知:如何正确求助?哪些是违规求助? 3319141
关于积分的说明 10193278
捐赠科研通 3033802
什么是DOI,文献DOI怎么找? 1664695
邀请新用户注册赠送积分活动 796270
科研通“疑难数据库(出版商)”最低求助积分说明 757416