Multi-Scale Context-Guided Deep Network for Automated Lesion Segmentation With Endoscopy Images of Gastrointestinal Tract

分割 计算机科学 人工智能 背景(考古学) 特征(语言学) 联营 子网 图像分割 模式识别(心理学) 卷积神经网络 深度学习 计算机视觉 古生物学 语言学 哲学 计算机安全 生物
作者
Shuai Wang,Yang Cong,Hancan Zhu,Xianyi Chen,Liangqiong Qu,Huijie Fan,Qiang Zhang,Mingxia Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (2): 514-525 被引量:94
标识
DOI:10.1109/jbhi.2020.2997760
摘要

Accurate lesion segmentation based on endoscopy images is a fundamental task for the automated diagnosis of gastrointestinal tract (GI Tract) diseases. Previous studies usually use hand-crafted features for representing endoscopy images, while feature definition and lesion segmentation are treated as two standalone tasks. Due to the possible heterogeneity between features and segmentation models, these methods often result in sub-optimal performance. Several fully convolutional networks have been recently developed to jointly perform feature learning and model training for GI Tract disease diagnosis. However, they generally ignore local spatial details of endoscopy images, as down-sampling operations (e.g., pooling and convolutional striding) may result in irreversible loss of image spatial information. To this end, we propose a multi-scale context-guided deep network (MCNet) for end-to-end lesion segmentation of endoscopy images in GI Tract, where both global and local contexts are captured as guidance for model training. Specifically, one global subnetwork is designed to extract the global structure and high-level semantic context of each input image. Then we further design two cascaded local subnetworks based on output feature maps of the global subnetwork, aiming to capture both local appearance information and relatively high-level semantic information in a multi-scale manner. Those feature maps learned by three subnetworks are further fused for the subsequent task of lesion segmentation. We have evaluated the proposed MCNet on 1,310 endoscopy images from the public EndoVis-Ab and CVC-ClinicDB datasets for abnormal segmentation and polyp segmentation, respectively. Experimental results demonstrate that MCNet achieves [Formula: see text] and [Formula: see text] mean intersection over union (mIoU) on two datasets, respectively, outperforming several state-of-the-art approaches in automated lesion segmentation with endoscopy images of GI Tract.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
桐桐应助zhui采纳,获得10
1秒前
web123完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
热情醉山发布了新的文献求助30
5秒前
Tinsulfides完成签到,获得积分10
8秒前
9秒前
猪猪hero应助甜美帅哥采纳,获得10
11秒前
阿托品完成签到,获得积分10
11秒前
12秒前
13秒前
高贵路灯完成签到,获得积分10
13秒前
mumu发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
18秒前
好好完成签到,获得积分10
18秒前
19秒前
Youtenter完成签到,获得积分10
19秒前
热情醉山完成签到,获得积分10
20秒前
Akim应助取个名儿吧采纳,获得10
20秒前
猪猪hero应助耍酷的梦桃采纳,获得10
20秒前
热情思天发布了新的文献求助30
21秒前
22秒前
蓝莲完成签到,获得积分10
22秒前
23秒前
Night完成签到,获得积分10
24秒前
宫城百事顺完成签到,获得积分10
24秒前
高高梦松完成签到,获得积分10
26秒前
周奕迅发布了新的文献求助10
26秒前
沉静代芹发布了新的文献求助10
28秒前
英姑应助科研顺利采纳,获得10
29秒前
自然的苗条完成签到,获得积分10
29秒前
pentjy完成签到,获得积分10
30秒前
充电宝应助PeterParker采纳,获得10
31秒前
31秒前
好心情发布了新的文献求助100
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3565528
求助须知:如何正确求助?哪些是违规求助? 3138490
关于积分的说明 9426917
捐赠科研通 2838955
什么是DOI,文献DOI怎么找? 1560600
邀请新用户注册赠送积分活动 729739
科研通“疑难数据库(出版商)”最低求助积分说明 717597