Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning

医学 糖尿病性视网膜病变 人工智能 眼底(子宫) 深度学习 置信区间 预测值 黄斑水肿 视网膜 眼科 视网膜病变 机器学习 内科学 糖尿病 计算机科学 内分泌学
作者
Michael D. Abràmoff,Yiyue Lou,Ali Erginay,Warren Clarida,Ryan Amelon,James C. Folk,Meindert Niemeijer
出处
期刊:Investigative Ophthalmology & Visual Science [Association for Research in Vision and Ophthalmology (ARVO)]
卷期号:57 (13): 5200-5200 被引量:906
标识
DOI:10.1167/iovs.16-19964
摘要

Purpose: To compare performance of a deep-learning enhanced algorithm for automated detection of diabetic retinopathy (DR), to the previously published performance of that algorithm, the Iowa Detection Program (IDP)–without deep learning components–on the same publicly available set of fundus images and previously reported consensus reference standard set, by three US Board certified retinal specialists. Methods: We used the previously reported consensus reference standard of referable DR (rDR), defined as International Clinical Classification of Diabetic Retinopathy moderate, severe nonproliferative (NPDR), proliferative DR, and/or macular edema (ME). Neither Messidor-2 images, nor the three retinal specialists setting the Messidor-2 reference standard were used for training IDx-DR version X2.1. Sensitivity, specificity, negative predictive value, area under the curve (AUC), and their confidence intervals (CIs) were calculated. Results: Sensitivity was 96.8% (95% CI: 93.3%–98.8%), specificity was 87.0% (95% CI: 84.2%–89.4%), with 6/874 false negatives, resulting in a negative predictive value of 99.0% (95% CI: 97.8%–99.6%). No cases of severe NPDR, PDR, or ME were missed. The AUC was 0.980 (95% CI: 0.968–0.992). Sensitivity was not statistically different from published IDP sensitivity, which had a CI of 94.4% to 99.3%, but specificity was significantly better than the published IDP specificity CI of 55.7% to 63.0%. Conclusions: A deep-learning enhanced algorithm for the automated detection of DR, achieves significantly better performance than a previously reported, otherwise essentially identical, algorithm that does not employ deep learning. Deep learning enhanced algorithms have the potential to improve the efficiency of DR screening, and thereby to prevent visual loss and blindness from this devastating disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咕噜噜发布了新的文献求助10
刚刚
银河苏打完成签到,获得积分10
1秒前
随机子应助拼搏的雨真采纳,获得10
1秒前
婷婷完成签到,获得积分10
1秒前
2秒前
serenity711完成签到 ,获得积分10
2秒前
无语的凡梦完成签到,获得积分10
3秒前
3秒前
婷婷发布了新的文献求助10
5秒前
5秒前
DLL完成签到,获得积分10
5秒前
Ava应助银河苏打采纳,获得10
5秒前
NSS完成签到,获得积分10
6秒前
6秒前
ff发布了新的文献求助10
9秒前
DLL发布了新的文献求助10
10秒前
Liuuhhua完成签到,获得积分10
14秒前
虚幻的夜天完成签到 ,获得积分10
14秒前
咕噜噜完成签到,获得积分10
16秒前
dreamer完成签到,获得积分20
17秒前
18秒前
Augusterny完成签到 ,获得积分10
21秒前
21秒前
ss完成签到,获得积分10
22秒前
曹禛禛完成签到,获得积分20
23秒前
西伯侯完成签到,获得积分10
24秒前
善学以致用应助moninaaaaa采纳,获得10
25秒前
29秒前
高高诗柳完成签到,获得积分10
32秒前
菠萝蜜完成签到,获得积分10
34秒前
左丘冥发布了新的文献求助10
35秒前
40秒前
Akim应助炙热晓露采纳,获得10
43秒前
青街向晚完成签到,获得积分10
43秒前
顺利的若灵完成签到,获得积分10
44秒前
gishisei完成签到,获得积分10
46秒前
46秒前
小秋发布了新的文献求助10
46秒前
gan发布了新的文献求助10
47秒前
50秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera, Volume 3, Part 2 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165510
求助须知:如何正确求助?哪些是违规求助? 2816611
关于积分的说明 7913235
捐赠科研通 2476117
什么是DOI,文献DOI怎么找? 1318699
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388