过电位
析氧
电催化剂
催化作用
硒化物
材料科学
电解质
化学工程
分解水
纳米技术
无机化学
化学
电极
电化学
冶金
物理化学
有机化学
硒
光催化
工程类
作者
Yeshuang Du,Gongzhen Cheng,Wei Luo
出处
期刊:Nanoscale
[The Royal Society of Chemistry]
日期:2017-01-01
卷期号:9 (20): 6821-6825
被引量:127
摘要
The search for highly efficient non-precious metal electrocatalysts toward the oxygen evolution reaction (OER) is extremely essential for renewable energy systems. Here, we report the colloidal synthesis of Fe doped NiSe2, which functions as a high-performance electrocatalyst for the OER in alkaline solution. The NiFeSe catalysts are composed of urchin-like dendrites with a high number of active sites, which could provide fast transportation of electrons and electrolytes, and facile release of the evolved O2 bubbles during the OER catalysis. Benefitting from this unique urchin-like structure and strong electron interaction between Fe, Ni, and Se, the Ni1.12Fe0.49Se2 catalyst exhibits excellent electrocatalytic activity and high durability toward the OER in alkaline solution, with an overpotential of 227 mV at a current density of 10 mA cm−2, which is, to the best of our knowledge, higher than most of the reported selenide-based electrocatalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI