A graph-based iterative compiler pass selection and phase ordering approach

编译程序 计算机科学 过程间优化 加速 并行计算 优化编译器 管道(软件) 图形 循环优化 绩效改进 算法 理论计算机科学 程序设计语言 运营管理 经济
作者
Ricardo Nobre,Luiz G. A. Martins,João M. P. Cardoso
标识
DOI:10.1145/2907950.2907959
摘要

Nowadays compilers include tens or hundreds of optimization passes, which makes it difficult to find sequences of optimizations that achieve compiled code more optimized than the one obtained using typical compiler options such as -O2 and -O3. The problem involves both the selection of the compiler passes to use and their ordering in the compilation pipeline. The improvement achieved by the use of custom phase orders for each function can be significant, and thus important to satisfy strict requirements such as the ones present in high-performance embedded computing systems. In this paper we present a new and fast iterative approach to the phase selection and ordering challenges resulting in compiled code with higher performance than the one achieved with the standard optimization levels of the LLVM compiler. The obtained performance improvements are comparable with the ones achieved by other iterative approaches while requiring considerably less time and resources. Our approach is based on sampling over a graph representing transitions between compiler passes. We performed a number of experiments targeting the LEON3 microarchitecture using the Clang/LLVM 3.7 compiler, considering 140 LLVM passes and a set of 42 representative signal and image processing C functions. An exhaustive cross-validation shows our new exploration method is able to achieve a geometric mean performance speedup of 1.28x over the best individually selected -OX flag when considering 100,000 iterations; versus geometric mean speedups from 1.16x to 1.25x obtained with state-of-the-art iterative methods not using the graph. From the set of exploration methods tested, our new method is the only one consistently finding compiler sequences that result in performance improvements when considering 100 or less exploration iterations. Specifically, it achieved geometric mean speedups of 1.08x and 1.16x for 10 and 100 iterations, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
简单的南霜完成签到,获得积分20
2秒前
2秒前
CipherSage应助爆米花采纳,获得10
2秒前
在逃公主发布了新的文献求助10
2秒前
3秒前
infognet完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
张怡博发布了新的文献求助10
5秒前
jes发布了新的文献求助10
6秒前
6秒前
Quenchingstar发布了新的文献求助10
7秒前
8秒前
柠檬茶156发布了新的文献求助10
8秒前
精明人达发布了新的文献求助10
9秒前
彭于晏应助明某到此一游采纳,获得10
9秒前
栗子鱼发布了新的文献求助10
9秒前
yyyfff应助凉逗听采纳,获得10
10秒前
Akim应助杀出个黎明采纳,获得10
10秒前
Leonfun123发布了新的文献求助30
11秒前
二号发布了新的文献求助10
12秒前
13秒前
科研通AI2S应助haha采纳,获得10
13秒前
陈开心完成签到,获得积分10
13秒前
JIUR发布了新的文献求助20
14秒前
十七应助Chaohuan采纳,获得10
15秒前
15秒前
15秒前
深情安青应助拾柒采纳,获得10
15秒前
15秒前
Piggy完成签到,获得积分10
17秒前
情怀应助serendipity采纳,获得10
17秒前
17秒前
今后应助精明人达采纳,获得10
17秒前
19秒前
炎星语发布了新的文献求助10
19秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470584
求助须知:如何正确求助?哪些是违规求助? 3063615
关于积分的说明 9084626
捐赠科研通 2754092
什么是DOI,文献DOI怎么找? 1511215
邀请新用户注册赠送积分活动 698347
科研通“疑难数据库(出版商)”最低求助积分说明 698221