Mapping the emotional face. How individual face parts contribute to successful emotion recognition

面部动作编码系统 面部表情 悲伤 厌恶 相似性(几何) 幸福 面子(社会学概念) 心理学 表达式(计算机科学) 认知心理学 情感表达 情绪分类 鉴定(生物学) 计算机科学 人工智能 沟通 愤怒 社会心理学 图像(数学) 生物 社会学 程序设计语言 植物 社会科学
作者
Martin Wegrzyn,Maria Saleti Lock Vogt,Berna Kireclioglu,Julia Schneider,Johanna Kissler
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:12 (5): e0177239-e0177239 被引量:172
标识
DOI:10.1371/journal.pone.0177239
摘要

Which facial features allow human observers to successfully recognize expressions of emotion? While the eyes and mouth have been frequently shown to be of high importance, research on facial action units has made more precise predictions about the areas involved in displaying each emotion. The present research investigated on a fine-grained level, which physical features are most relied on when decoding facial expressions. In the experiment, individual faces expressing the basic emotions according to Ekman were hidden behind a mask of 48 tiles, which was sequentially uncovered. Participants were instructed to stop the sequence as soon as they recognized the facial expression and assign it the correct label. For each part of the face, its contribution to successful recognition was computed, allowing to visualize the importance of different face areas for each expression. Overall, observers were mostly relying on the eye and mouth regions when successfully recognizing an emotion. Furthermore, the difference in the importance of eyes and mouth allowed to group the expressions in a continuous space, ranging from sadness and fear (reliance on the eyes) to disgust and happiness (mouth). The face parts with highest diagnostic value for expression identification were typically located in areas corresponding to action units from the facial action coding system. A similarity analysis of the usefulness of different face parts for expression recognition demonstrated that faces cluster according to the emotion they express, rather than by low-level physical features. Also, expressions relying more on the eyes or mouth region were in close proximity in the constructed similarity space. These analyses help to better understand how human observers process expressions of emotion, by delineating the mapping from facial features to psychological representation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lalala完成签到,获得积分10
1秒前
Ran-HT完成签到,获得积分10
1秒前
1秒前
1秒前
小二郎应助铁妞妞是土猫采纳,获得30
2秒前
喜悦的明辉完成签到 ,获得积分10
2秒前
勤恳易真完成签到,获得积分10
3秒前
aslink完成签到,获得积分10
3秒前
研友_nPxRRn完成签到,获得积分10
3秒前
4秒前
xyy001完成签到,获得积分10
4秒前
lkk完成签到,获得积分10
5秒前
张存银发布了新的文献求助10
5秒前
九月完成签到,获得积分10
6秒前
想干大事的小喽啰完成签到,获得积分10
6秒前
善学以致用应助在远方采纳,获得10
6秒前
6秒前
邓博完成签到,获得积分10
6秒前
小皮皮完成签到,获得积分10
7秒前
特洛伊完成签到 ,获得积分10
7秒前
调研昵称发布了新的文献求助10
7秒前
8秒前
dingdeanna完成签到,获得积分10
8秒前
9秒前
lou完成签到,获得积分10
9秒前
常冬寒发布了新的文献求助10
9秒前
小张爱化工完成签到,获得积分10
9秒前
9秒前
格兰德法泽尔完成签到,获得积分10
10秒前
925完成签到,获得积分10
11秒前
十月知野完成签到,获得积分20
11秒前
stop here完成签到,获得积分10
11秒前
11秒前
niu完成签到,获得积分10
12秒前
Antonio完成签到 ,获得积分10
12秒前
12秒前
有魅力的电脑完成签到,获得积分10
12秒前
13秒前
mm完成签到 ,获得积分10
13秒前
C.Z.Young发布了新的文献求助10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150871
求助须知:如何正确求助?哪些是违规求助? 2802403
关于积分的说明 7847692
捐赠科研通 2459732
什么是DOI,文献DOI怎么找? 1309322
科研通“疑难数据库(出版商)”最低求助积分说明 628884
版权声明 601757