Self-Cascade System Based on Cupric Oxide Nanoparticles as Dual-Functional Enzyme Mimics for Ultrasensitive Detection of Silver Ions

荧光 化学 检出限 纳米探针 纳米材料 组合化学 纳米颗粒 催化作用 谷胱甘肽 纳米技术 材料科学 色谱法 生物化学 量子力学 物理
作者
Liuying He,Yuexiang Lu,Xinyu Gao,Pengcheng Song,Zixin Huang,Shuang Liu,Yueying Liu
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:6 (9): 12132-12139 被引量:38
标识
DOI:10.1021/acssuschemeng.8b02476
摘要

Artificial enzyme mimics based on nanomaterials have attracted sustained attention owing to their multiple advantages compared with natural enzymes. However, there are a few enzyme self-cascade systems for the highly sensitive detection of analytical targets. Herein, we have described a self-cascade catalytic system based on single-component cupric oxide nanoparticles (CuO NPs) for an ultrasensitive fluorescent detection toward glutathione (GSH) and Ag+ ions. The limit of detection is lower for nanomolar (nM) and picomolar (pM) levels for GSH and Ag+, respectively. To the best of our knowledge, for the first time, we find that CuO NPs possess the intrinsic GSH-oxidase and peroxidase-like activity as a dual-functional nanozyme, coupling with terephthalic acid (TA) and GSH to construct a self-cascade fluorescent system. The turn-on fluorescence signal of oxidation hydroxyterephthalate (TAOH) is generated in the presence of GSH. Then, the fluorescence of a reaction mixture is quenched after the addition of Ag+ ions, operating as a turn-off switch. The turn-on–off switch allows the analysis of GSH and Ag+ ions by a change of fluorescence status. The detection limits are 32 nM and 37 pM for GSH and Ag+, respectively. To the best of our knowledge, the approach presented in this work shows the highest sensitivity for Ag+ detection among all reported fluorescent/colorimetric methods. Moreover, there is no obvious interference with the addition of other interferences without a masking agent. Our study opens a new avenue for the use of a single nanomaterial as an artificial enzyme self-cascade catalytic system for highly sensitive target analysis in biosensor, diagnosis, and environmental fields.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助罗媛采纳,获得10
1秒前
柠栀发布了新的文献求助10
2秒前
2秒前
tcmj发布了新的文献求助10
3秒前
w1b发布了新的文献求助10
4秒前
小马甲应助Oliver采纳,获得10
5秒前
田様应助大方绿蕊采纳,获得10
5秒前
李健的粉丝团团长应助000采纳,获得10
5秒前
ree发布了新的文献求助20
5秒前
量子星尘发布了新的文献求助10
7秒前
ZXD1989完成签到 ,获得积分10
7秒前
samifranco发布了新的文献求助10
7秒前
zz完成签到,获得积分10
9秒前
llll完成签到 ,获得积分0
9秒前
9秒前
10秒前
10秒前
小T儿发布了新的文献求助10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
cjl应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
核桃应助科研通管家采纳,获得30
12秒前
Hello应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
Criminology34应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
能干巨人应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711679
求助须知:如何正确求助?哪些是违规求助? 5205113
关于积分的说明 15264986
捐赠科研通 4863917
什么是DOI,文献DOI怎么找? 2611005
邀请新用户注册赠送积分活动 1561363
关于科研通互助平台的介绍 1518685