Multi-view information fusion in mammograms: A comprehensive overview

计算机科学 乳腺摄影术 背景(考古学) 异常 乳腺癌 人工智能 模式识别(心理学) 医学 癌症 生物 精神科 内科学 古生物学
作者
Amira Jouirou,Abir Baâzaoui,Walid Barhoumi
出处
期刊:Information Fusion [Elsevier]
卷期号:52: 308-321 被引量:35
标识
DOI:10.1016/j.inffus.2019.05.001
摘要

In the framework of computer-aided diagnosis of breast cancer, many systems were designed for the detection, the classification and/or the content-based mammogram retrieval (CBMR); in order to serve as a second source of decision for the radiologists. Nevertheless, to improve the final decision-making, the concept of multi-view information fusion (MVIF) was recently introduced. Indeed, this concept has been successfully applied in the context of breast cancer, since screening mammography provides two views for each breast: MedioLateral-Oblique (MLO) and CranioCaudal (CC) views. As these two views are complementary, MVIF methods widely proved their effectiveness. In this paper, we review the main methods that have been proposed for MVIF in the context of the detection (abnormality vs. non abnormality), the classification (normal vs. benign vs. malignant) and the content-based retrieval of mammograms. In fact, we classified detection based on MVIF methods into two main sub-classes, including ipsilateral analysis and bilateral analysis. Besides, classification based on MVIF methods were regrouped into two sub-classes, namely classification of breast masses based on MVIF and classification of breast microcalcifications based on MVIF. Lastly, CBMR based on MVIF methods were also classified into two sub-classes: early fusion-based MVIF-CBMR and late fusion-based MVIF-CBMR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HUAJIAO发布了新的文献求助10
1秒前
爆米花应助李胜采纳,获得20
1秒前
深情安青应助DATyyy采纳,获得10
2秒前
小芦铃发布了新的文献求助10
2秒前
lingo完成签到 ,获得积分10
3秒前
4秒前
kk完成签到,获得积分10
4秒前
4秒前
5秒前
我要毕业完成签到,获得积分20
5秒前
希望天下0贩的0应助123采纳,获得10
7秒前
学术小白发布了新的文献求助10
7秒前
7秒前
7秒前
曹年跃发布了新的文献求助10
8秒前
8秒前
ting发布了新的文献求助10
8秒前
8秒前
英俊的铭应助yyxxing采纳,获得10
8秒前
9秒前
杳鸢应助缓慢的菠萝采纳,获得50
9秒前
10秒前
斯文败类应助ordin采纳,获得10
11秒前
卡思发布了新的文献求助30
11秒前
nuc发布了新的文献求助10
12秒前
12秒前
今后应助浅斟低唱采纳,获得10
12秒前
阳光沛凝完成签到,获得积分10
12秒前
12秒前
13秒前
情怀应助迷你的葵阴采纳,获得10
14秒前
领导范儿应助kaio采纳,获得10
14秒前
cxy完成签到,获得积分10
14秒前
14秒前
王木兮完成签到,获得积分10
14秒前
14秒前
风之子应助阿良采纳,获得10
15秒前
qiwei完成签到 ,获得积分10
15秒前
15秒前
淡定海亦发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3524656
求助须知:如何正确求助?哪些是违规求助? 3105505
关于积分的说明 9274438
捐赠科研通 2802572
什么是DOI,文献DOI怎么找? 1538099
邀请新用户注册赠送积分活动 716017
科研通“疑难数据库(出版商)”最低求助积分说明 709140