Multi-view information fusion in mammograms: A comprehensive overview

计算机科学 乳腺摄影术 背景(考古学) 异常 乳腺癌 人工智能 模式识别(心理学) 医学 癌症 内科学 古生物学 精神科 生物
作者
Amira Jouirou,Abir Baâzaoui,Walid Barhoumi
出处
期刊:Information Fusion [Elsevier]
卷期号:52: 308-321 被引量:42
标识
DOI:10.1016/j.inffus.2019.05.001
摘要

In the framework of computer-aided diagnosis of breast cancer, many systems were designed for the detection, the classification and/or the content-based mammogram retrieval (CBMR); in order to serve as a second source of decision for the radiologists. Nevertheless, to improve the final decision-making, the concept of multi-view information fusion (MVIF) was recently introduced. Indeed, this concept has been successfully applied in the context of breast cancer, since screening mammography provides two views for each breast: MedioLateral-Oblique (MLO) and CranioCaudal (CC) views. As these two views are complementary, MVIF methods widely proved their effectiveness. In this paper, we review the main methods that have been proposed for MVIF in the context of the detection (abnormality vs. non abnormality), the classification (normal vs. benign vs. malignant) and the content-based retrieval of mammograms. In fact, we classified detection based on MVIF methods into two main sub-classes, including ipsilateral analysis and bilateral analysis. Besides, classification based on MVIF methods were regrouped into two sub-classes, namely classification of breast masses based on MVIF and classification of breast microcalcifications based on MVIF. Lastly, CBMR based on MVIF methods were also classified into two sub-classes: early fusion-based MVIF-CBMR and late fusion-based MVIF-CBMR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
GXfjnu完成签到,获得积分10
1秒前
cyt发布了新的文献求助10
1秒前
asdfzxcv应助蒲云海采纳,获得10
1秒前
阔达的向南完成签到,获得积分20
1秒前
碧蓝迎南完成签到,获得积分10
2秒前
2秒前
摆烂昊发布了新的文献求助10
2秒前
我来文献求助了完成签到,获得积分10
3秒前
iris601完成签到,获得积分10
3秒前
3秒前
ttt完成签到,获得积分10
3秒前
库凯伊完成签到,获得积分10
4秒前
令尊是我犬子完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
7秒前
田様应助开开采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
晚星就位完成签到,获得积分10
8秒前
9秒前
HD1012完成签到,获得积分20
10秒前
10秒前
充电宝应助武安采纳,获得10
11秒前
13秒前
尹春阳发布了新的文献求助10
14秒前
lf发布了新的文献求助10
14秒前
hlz发布了新的文献求助10
15秒前
Ky_Mac应助七七采纳,获得30
16秒前
香香发布了新的文献求助10
18秒前
19秒前
宋祝福完成签到 ,获得积分10
20秒前
独特的凝云完成签到 ,获得积分0
22秒前
22秒前
Auriga完成签到,获得积分10
23秒前
江舁完成签到 ,获得积分10
23秒前
摆烂昊完成签到,获得积分20
23秒前
邢至森发布了新的文献求助30
24秒前
Jasper应助RW采纳,获得10
24秒前
无名应助科研通管家采纳,获得10
25秒前
深情安青应助科研通管家采纳,获得10
25秒前
李爱国应助科研通管家采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5708912
求助须知:如何正确求助?哪些是违规求助? 5191248
关于积分的说明 15255267
捐赠科研通 4861810
什么是DOI,文献DOI怎么找? 2609693
邀请新用户注册赠送积分活动 1560161
关于科研通互助平台的介绍 1517906