Multi-view information fusion in mammograms: A comprehensive overview

计算机科学 乳腺摄影术 背景(考古学) 异常 乳腺癌 人工智能 模式识别(心理学) 医学 癌症 生物 精神科 内科学 古生物学
作者
Amira Jouirou,Abir Baâzaoui,Walid Barhoumi
出处
期刊:Information Fusion [Elsevier]
卷期号:52: 308-321 被引量:35
标识
DOI:10.1016/j.inffus.2019.05.001
摘要

In the framework of computer-aided diagnosis of breast cancer, many systems were designed for the detection, the classification and/or the content-based mammogram retrieval (CBMR); in order to serve as a second source of decision for the radiologists. Nevertheless, to improve the final decision-making, the concept of multi-view information fusion (MVIF) was recently introduced. Indeed, this concept has been successfully applied in the context of breast cancer, since screening mammography provides two views for each breast: MedioLateral-Oblique (MLO) and CranioCaudal (CC) views. As these two views are complementary, MVIF methods widely proved their effectiveness. In this paper, we review the main methods that have been proposed for MVIF in the context of the detection (abnormality vs. non abnormality), the classification (normal vs. benign vs. malignant) and the content-based retrieval of mammograms. In fact, we classified detection based on MVIF methods into two main sub-classes, including ipsilateral analysis and bilateral analysis. Besides, classification based on MVIF methods were regrouped into two sub-classes, namely classification of breast masses based on MVIF and classification of breast microcalcifications based on MVIF. Lastly, CBMR based on MVIF methods were also classified into two sub-classes: early fusion-based MVIF-CBMR and late fusion-based MVIF-CBMR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
英姑应助书生采纳,获得10
3秒前
科研钓鱼佬完成签到,获得积分10
4秒前
6秒前
petrichor应助C_Cppp采纳,获得10
6秒前
nan完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
勤恳的雨文完成签到,获得积分10
7秒前
木森ab发布了新的文献求助10
8秒前
paul完成签到,获得积分10
8秒前
小鞋完成签到,获得积分10
9秒前
开心青旋发布了新的文献求助10
9秒前
fztnh发布了新的文献求助10
9秒前
无名花生完成签到 ,获得积分10
9秒前
11秒前
12秒前
12秒前
杜若完成签到,获得积分10
12秒前
12秒前
木森ab完成签到,获得积分20
14秒前
paul发布了新的文献求助10
15秒前
16秒前
MEME发布了新的文献求助10
19秒前
19秒前
情怀应助LSH970829采纳,获得10
19秒前
CHINA_C13发布了新的文献求助10
22秒前
Mars发布了新的文献求助10
23秒前
哈哈哈完成签到,获得积分10
23秒前
玛卡巴卡应助平常的毛豆采纳,获得100
24秒前
默默的青旋完成签到,获得积分10
25秒前
28秒前
搜集达人应助淡淡采白采纳,获得10
28秒前
高高代珊完成签到 ,获得积分10
29秒前
gmc发布了新的文献求助10
30秒前
30秒前
31秒前
善学以致用应助Mian采纳,获得10
31秒前
学科共进发布了新的文献求助60
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824