SPFTN: A Joint Learning Framework for Localizing and Segmenting Objects in Weakly Labeled Videos

计算机科学 人工智能 分割 任务(项目管理) 模棱两可 对象(语法) 多任务学习 特征(语言学) 特征学习 最小边界框 市场细分 深度学习 机器学习 过程(计算) 跳跃式监视 代表(政治) 面子(社会学概念) 任务分析 模式识别(心理学) 图像(数学) 政治学 语言学 社会科学 法学 程序设计语言 管理 营销 经济 业务 社会学 哲学 操作系统 政治
作者
Dingwen Zhang,Junwei Han,Le Yang,Dong Xu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:42 (2): 475-489 被引量:74
标识
DOI:10.1109/tpami.2018.2881114
摘要

Object localization and segmentation in weakly labeled videos are two interesting yet challenging tasks. Models built for simultaneous object localization and segmentation have been explored in the conventional fully supervised learning scenario to boost the performance of each task. However, none of the existing works has attempted to jointly learn object localization and segmentation models under weak supervision. To this end, we propose a joint learning framework called Self-Paced Fine-Tuning Network (SPFTN) for localizing and segmenting objects in weakly labelled videos. Learning the deep model jointly for object localization and segmentation under weak supervision is very challenging as the learning process of each single task would face serious ambiguity issue due to the lack of bounding-box or pixel-level supervision. To address this problem, our proposed deep SPFTN model is carefully designed with a novel multi-task self-paced learning objective, which leverages the task-specific prior knowledge and the knowledge that has been already captured to infer the confident training samples for each task. By aggregating the confident knowledge from each single task to mine reliable patterns and learning deep feature representation for both tasks, the proposed learning framework can address the ambiguity issue under weak supervision with simple optimization. Comprehensive experiments on the large-scale YouTube-Objects and DAVIS datasets demonstrate that the proposed approach achieves superior performance when compared with other state-of-the-art methods and the baseline networks/models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暖小阳完成签到,获得积分10
1秒前
周星星发布了新的文献求助10
1秒前
1秒前
积极灵薇发布了新的文献求助20
1秒前
77发布了新的文献求助10
4秒前
5秒前
6秒前
7秒前
7秒前
却之不恭6253完成签到,获得积分10
7秒前
周海江发布了新的文献求助10
8秒前
冰水混合物完成签到,获得积分10
8秒前
路小黑完成签到 ,获得积分10
9秒前
10秒前
10秒前
Nozomi发布了新的文献求助10
10秒前
hang完成签到,获得积分10
10秒前
带善人发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
12秒前
13秒前
13秒前
华仔应助song_song采纳,获得10
14秒前
齐天大圣应助五六七采纳,获得150
15秒前
老实起哞发布了新的文献求助10
15秒前
文档发布了新的文献求助10
16秒前
孙传彬发布了新的文献求助10
17秒前
无限飞丹发布了新的文献求助10
17秒前
犹豫的青烟完成签到 ,获得积分10
17秒前
18秒前
18秒前
yesonice完成签到,获得积分10
19秒前
20秒前
21秒前
zhangkx23完成签到,获得积分10
21秒前
猴子好坏完成签到,获得积分10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989444
求助须知:如何正确求助?哪些是违规求助? 3531531
关于积分的说明 11254250
捐赠科研通 3270191
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174