SPFTN: A Joint Learning Framework for Localizing and Segmenting Objects in Weakly Labeled Videos

计算机科学 人工智能 分割 任务(项目管理) 模棱两可 对象(语法) 多任务学习 特征(语言学) 特征学习 最小边界框 市场细分 深度学习 机器学习 过程(计算) 跳跃式监视 代表(政治) 面子(社会学概念) 任务分析 模式识别(心理学) 图像(数学) 政治学 语言学 社会科学 法学 程序设计语言 管理 营销 经济 业务 社会学 哲学 操作系统 政治
作者
Dingwen Zhang,Junwei Han,Le Yang,Dong Xu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:42 (2): 475-489 被引量:74
标识
DOI:10.1109/tpami.2018.2881114
摘要

Object localization and segmentation in weakly labeled videos are two interesting yet challenging tasks. Models built for simultaneous object localization and segmentation have been explored in the conventional fully supervised learning scenario to boost the performance of each task. However, none of the existing works has attempted to jointly learn object localization and segmentation models under weak supervision. To this end, we propose a joint learning framework called Self-Paced Fine-Tuning Network (SPFTN) for localizing and segmenting objects in weakly labelled videos. Learning the deep model jointly for object localization and segmentation under weak supervision is very challenging as the learning process of each single task would face serious ambiguity issue due to the lack of bounding-box or pixel-level supervision. To address this problem, our proposed deep SPFTN model is carefully designed with a novel multi-task self-paced learning objective, which leverages the task-specific prior knowledge and the knowledge that has been already captured to infer the confident training samples for each task. By aggregating the confident knowledge from each single task to mine reliable patterns and learning deep feature representation for both tasks, the proposed learning framework can address the ambiguity issue under weak supervision with simple optimization. Comprehensive experiments on the large-scale YouTube-Objects and DAVIS datasets demonstrate that the proposed approach achieves superior performance when compared with other state-of-the-art methods and the baseline networks/models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
考拉完成签到,获得积分10
1秒前
切奇莉亚发布了新的文献求助10
1秒前
2秒前
2秒前
xiaohe发布了新的文献求助10
2秒前
七辰发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
七喜完成签到 ,获得积分10
3秒前
jy完成签到,获得积分10
4秒前
4秒前
lee完成签到,获得积分10
4秒前
考拉发布了新的文献求助10
4秒前
Yziii应助LM采纳,获得30
4秒前
CipherSage应助Admin采纳,获得10
5秒前
6秒前
流苏完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
oilmelech发布了新的文献求助10
8秒前
负责雪珊应助wen采纳,获得20
9秒前
懒羊羊发布了新的文献求助10
9秒前
s1kl发布了新的文献求助10
9秒前
完美世界应助积极的初南采纳,获得10
9秒前
共享精神应助bhzhang采纳,获得10
9秒前
小王同学完成签到 ,获得积分10
10秒前
wushuai发布了新的文献求助10
10秒前
研友_LwlAgn完成签到,获得积分10
11秒前
11秒前
熊猫应助ruuuu采纳,获得10
11秒前
小不点发布了新的文献求助30
11秒前
11秒前
12秒前
Aohang发布了新的文献求助10
12秒前
12秒前
Aprilapple发布了新的文献求助10
12秒前
高高的罡完成签到,获得积分10
13秒前
13秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3249411
求助须知:如何正确求助?哪些是违规求助? 2892704
关于积分的说明 8273386
捐赠科研通 2560931
什么是DOI,文献DOI怎么找? 1389354
科研通“疑难数据库(出版商)”最低求助积分说明 651164
邀请新用户注册赠送积分活动 627958