Conventional models and artificial intelligence-based models for energy consumption forecasting: A review

能源消耗 消费(社会学) 人工智能 人工神经网络 计算机科学 机器学习
作者
Nan Wei,Changjun Li,Xiaolong Peng,Fanhua Zeng,Xinqian Lu
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:181: 106187-106187 被引量:64
标识
DOI:10.1016/j.petrol.2019.106187
摘要

Abstract Conventional models and artificial intelligence (AI)-based models have been widely applied for energy consumption forecasting over the past decades. This paper reviews conventional models and AI-based models in energy consumption forecasting, and discusses the models in the aspects of forecasting horizon, applied areas, type of model, and forecasting accuracy. The conventional models are categorized into time series models, regression models, and gray models. The AI-based models are grouped into artificial neural network-based models and support vector regression machine-based models. Additionally, to the best of our knowledge, the evaluation of the models' performance in different forecasting horizons is a critical issue that has not been solved. Thus, for better evaluate the performance of forecasting models, a detailed reference range of mean absolute percentage error (MAPE) in energy consumption forecasting will also been proposed. The review results show that conventional models are preferred for the yearly energy consumption forecasting in national level. Among them, nonlinear regression models can not only explicitly describe the relationship between consumption data and influencing factors but also obtain the lowest average MAPE (1.79%) for long-term energy consumption forecasting. AI-based models are robust and full-scale in all applied areas and forecasting horizons. This paper provides valuable suggestions for researchers in model selection and serves as an initial study of the evaluation benchmark construction for energy consumption forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助悟空采纳,获得10
刚刚
124应助小糯米采纳,获得10
1秒前
2秒前
ffx完成签到,获得积分10
3秒前
田様应助bofu采纳,获得30
4秒前
5秒前
Chelyvahn完成签到,获得积分10
6秒前
9秒前
Owen应助阿宁采纳,获得10
9秒前
努力搞科研完成签到,获得积分10
9秒前
11秒前
12秒前
传奇3应助bofu采纳,获得30
12秒前
13秒前
13秒前
华仔应助漂亮的访冬采纳,获得10
14秒前
m13965062353完成签到,获得积分10
15秒前
科研通AI2S应助某某某采纳,获得10
15秒前
17秒前
17秒前
科研通AI2S应助Chelyvahn采纳,获得10
17秒前
搞怪柔发布了新的文献求助10
18秒前
BELIEVE发布了新的文献求助10
19秒前
20秒前
小二郎应助心云采纳,获得10
21秒前
万能图书馆应助bofu采纳,获得30
22秒前
酷波er应助落后的冬寒采纳,获得10
22秒前
23秒前
23秒前
二小发布了新的文献求助10
23秒前
24秒前
puzhongjiMiQ发布了新的文献求助10
25秒前
25秒前
renzhuo完成签到,获得积分20
25秒前
zz完成签到,获得积分10
25秒前
cgliuhx完成签到,获得积分10
26秒前
美美哒发布了新的文献求助10
26秒前
我呢发布了新的文献求助10
27秒前
Mercury完成签到,获得积分10
27秒前
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
第四次气候变化国家评估报告 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306108
求助须知:如何正确求助?哪些是违规求助? 2939911
关于积分的说明 8494977
捐赠科研通 2614242
什么是DOI,文献DOI怎么找? 1428001
科研通“疑难数据库(出版商)”最低求助积分说明 663219
邀请新用户注册赠送积分活动 648037