Conventional models and artificial intelligence-based models for energy consumption forecasting: A review

预测建模 平均绝对百分比误差 能源消耗 水准点(测量) 消费(社会学) 选型 人工智能 人工神经网络 计算机科学 机器学习 工程类 大地测量学 社会科学 电气工程 社会学 地理
作者
Nan Wei,Changjun Li,Xiaomei Peng,Fanhua Zeng,Xinqian Lu
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:181: 106187-106187 被引量:200
标识
DOI:10.1016/j.petrol.2019.106187
摘要

Abstract Conventional models and artificial intelligence (AI)-based models have been widely applied for energy consumption forecasting over the past decades. This paper reviews conventional models and AI-based models in energy consumption forecasting, and discusses the models in the aspects of forecasting horizon, applied areas, type of model, and forecasting accuracy. The conventional models are categorized into time series models, regression models, and gray models. The AI-based models are grouped into artificial neural network-based models and support vector regression machine-based models. Additionally, to the best of our knowledge, the evaluation of the models' performance in different forecasting horizons is a critical issue that has not been solved. Thus, for better evaluate the performance of forecasting models, a detailed reference range of mean absolute percentage error (MAPE) in energy consumption forecasting will also been proposed. The review results show that conventional models are preferred for the yearly energy consumption forecasting in national level. Among them, nonlinear regression models can not only explicitly describe the relationship between consumption data and influencing factors but also obtain the lowest average MAPE (1.79%) for long-term energy consumption forecasting. AI-based models are robust and full-scale in all applied areas and forecasting horizons. This paper provides valuable suggestions for researchers in model selection and serves as an initial study of the evaluation benchmark construction for energy consumption forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
调研昵称发布了新的文献求助50
刚刚
1秒前
白白不读书完成签到 ,获得积分10
1秒前
2秒前
AIA7发布了新的文献求助10
2秒前
2秒前
2秒前
夏橪完成签到,获得积分10
2秒前
2秒前
dddddd发布了新的文献求助10
3秒前
什么也难不倒我完成签到 ,获得积分10
3秒前
3秒前
立马毕业发布了新的文献求助10
3秒前
喜悦的尔阳完成签到,获得积分10
4秒前
4秒前
现实的白开水完成签到,获得积分10
4秒前
4秒前
SHDeathlock发布了新的文献求助50
4秒前
lunan发布了新的文献求助10
5秒前
5秒前
酷炫过客完成签到,获得积分20
5秒前
6秒前
7秒前
7秒前
华仔应助xiaoziyi666采纳,获得10
7秒前
渝州人完成签到,获得积分10
7秒前
7秒前
hanna发布了新的文献求助10
7秒前
科研通AI2S应助neil采纳,获得10
8秒前
大模型应助天真思雁采纳,获得10
8秒前
酷炫过客发布了新的文献求助10
8秒前
8秒前
深情凡灵发布了新的文献求助10
9秒前
马保国123发布了新的文献求助10
9秒前
胡须完成签到,获得积分10
10秒前
jjgod发布了新的文献求助10
10秒前
muomuo发布了新的文献求助10
11秒前
湘华完成签到,获得积分10
11秒前
渝州人发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762