亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Simulation of a Short-Channel 4H-SiC UMOSFET with Buried p Epilayer for Low Oxide Electric Field and Switching Loss

电场 材料科学 氧化物 光电子学 电气工程 电介质 击穿电压 拓扑(电路) 电压 物理 工程类 量子力学 冶金
作者
Zhenxi Shen,Feng Zhang,Guangxuan Yan,Zheng Wen,Wei Zhao,Lei Wang,Xingfang Liu,Guang‐Zhen Sun,Yiping Zeng,Sima Dimitrijev,Jisheng Han
出处
期刊:2018 1st Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia) 被引量:1
标识
DOI:10.1109/wipdaasia.2018.8734604
摘要

A 4H-SiC UMOSFET structure, which can significantly reduce both the electric field in the gate dielectric and the total switching loss, is characterized by simulation in this letter. The presented structure features a buried p layer (BPL) inside the drift region and an n implanted region N implant under the trench bottom. Based on the epitaxial structure, the elimination of the p-type implantation results in a decrease of device fabrication complexity and reduction of as-implanted lattice damage in the channel region. Meanwhile, a channel length of less than 0.5 μm can be obtained with the shielding of the BPL and the N implant region. The peak electric field of 1.03 MV/cm at the gate trench is reduced by 78.1% and 55.6% in comparison to the peak electric fields in the conventional UMOSFETs without and with bottom p well (BPW), respectively. Furthermore, the peak electric field is shifted from the corner of the gate oxide to the pn junction in the bulk region. In comparison to the conventional UMOSFETs with and without BPW, the breakdown voltage of 1602 V is increased by 48.3% and 86.3%, respectively, whereas the total switching loss of 18.84 mJ/cm 2 is decreased by 28% and 74%, respectively. Baliga's figure of merit is BFOM = 1100 MW/cm 2 , which is a very high value, showing the very high potential of the proposed UMOSFET structure for medium voltage power-electronic applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
少夫人发布了新的文献求助10
刚刚
AA完成签到,获得积分20
2秒前
2秒前
FashionBoy应助tree采纳,获得10
4秒前
5秒前
少夫人完成签到,获得积分10
5秒前
fdwang完成签到 ,获得积分10
8秒前
科研小白发布了新的文献求助10
12秒前
15秒前
17秒前
完美世界应助超人曼采纳,获得10
18秒前
19秒前
19秒前
21秒前
LY发布了新的文献求助10
22秒前
tree发布了新的文献求助10
22秒前
儒雅友儿发布了新的文献求助10
25秒前
抹茶麻薯发布了新的文献求助10
25秒前
CipherSage应助LY采纳,获得10
26秒前
打打应助科研小白采纳,获得10
29秒前
30秒前
30秒前
Lmyznl完成签到 ,获得积分10
31秒前
32秒前
33秒前
超人曼发布了新的文献求助10
37秒前
yuke发布了新的文献求助10
37秒前
枝头树上的布谷鸟完成签到 ,获得积分10
39秒前
40秒前
YE关闭了YE文献求助
40秒前
充电宝应助家湘采纳,获得10
40秒前
科研小白发布了新的文献求助10
45秒前
47秒前
英姑应助tree采纳,获得10
48秒前
韩韩完成签到 ,获得积分10
49秒前
爆米花应助yuke采纳,获得10
51秒前
51秒前
无花果应助vicky采纳,获得10
52秒前
Alex发布了新的文献求助10
52秒前
dawei发布了新的文献求助10
55秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561907
求助须知:如何正确求助?哪些是违规求助? 3135474
关于积分的说明 9412362
捐赠科研通 2835888
什么是DOI,文献DOI怎么找? 1558793
邀请新用户注册赠送积分活动 728442
科研通“疑难数据库(出版商)”最低求助积分说明 716832