作者
Chuangye Yang,Ruijuan Hao,Xiaodong Du,Qingheng Wang,Yuewen Deng,Ruijiao Sun
摘要
Abstract Land-based culturing can avoid the effects of environmental pollution and natural disasters, thus ensuring food safety for shellfish. However, food availability, in this case, is limited. To achieve the optimum balance of dietary carbohydrates and proteins and explore the mechanisms behind the phenomenon, we formulated five isoenergetic and isolipidic diets (C30P40, C35P35, C40P30, C45P25, and C50P20) with different levels of carbohydrates (C) and proteins (P). There were five experimental groups (C30P40, C35P35, C40P30, C45P25, and C50P20) and two control groups (CG1 and CG2). CG1 was fed with mixed powders of yeast and Chlorella sp., and CG2 was cultured in natural sea. After 60-day feeding, the highest rates of survival and absolute growth appeared in C45P25. C45P25 exhibited significantly higher activities of amylase, protease, alkaline phosphatase, acid phosphatase, superoxide dismutase, catalase, glutathione peroxidase, and phenoloxidase and significantly lower malondialdehyde content than C30P40, C35P35, C40P30, C50P20, and CG1. No significant differences were observed between C45P25 and CG2. Furthermore, the total antioxidant capacity of the pearl oysters in C45P25 was significantly higher than that in C30P40, C35P35, C40P30, and C50P20. On the basis of these results, the optimal balance of proteins and carbohydrates for pearl oysters was the C45P25 diet. Metabolomics-based profiling of the pearl oysters fed with high-carbohydrate/low-protein diet (C45P25) and low-carbohydrate/high-protein diet (C30P40) revealed 80 significantly different metabolites (VIP > 1 and P