Unsupervised Spatial–Spectral Feature Learning by 3D Convolutional Autoencoder for Hyperspectral Classification

高光谱成像 自编码 模式识别(心理学) 人工智能 计算机科学 特征(语言学) 特征学习 无监督学习 规范化(社会学) 特征提取 卷积神经网络 深度学习 人类学 语言学 哲学 社会学
作者
Shaohui Mei,Jingyu Ji,Yunhao Geng,Zhi Zhang,Li Xu,Qian Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (9): 6808-6820 被引量:255
标识
DOI:10.1109/tgrs.2019.2908756
摘要

Feature learning technologies using convolutional neural networks (CNNs) have shown superior performance over traditional hand-crafted feature extraction algorithms. However, a large number of labeled samples are generally required for CNN to learn effective features under classification task, which are hard to be obtained for hyperspectral remote sensing images. Therefore, in this paper, an unsupervised spatial-spectral feature learning strategy is proposed for hyperspectral images using 3-Dimensional (3D) convolutional autoencoder (3D-CAE). The proposed 3D-CAE consists of 3D or elementwise operations only, such as 3D convolution, 3D pooling, and 3D batch normalization, to maximally explore spatial-spectral structure information for feature extraction. A companion 3D convolutional decoder network is also designed to reconstruct the input patterns to the proposed 3D-CAE, by which all the parameters involved in the network can be trained without labeled training samples. As a result, effective features are learned in an unsupervised mode that label information of pixels is not required. Experimental results on several benchmark hyperspectral data sets have demonstrated that our proposed 3D-CAE is very effective in extracting spatial-spectral features and outperforms not only traditional unsupervised feature extraction algorithms but also many supervised feature extraction algorithms in classification application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老张完成签到,获得积分10
1秒前
和谐的团子完成签到,获得积分10
1秒前
asdwind完成签到,获得积分10
1秒前
咔什么嚓完成签到,获得积分10
1秒前
查查make完成签到,获得积分10
2秒前
忧郁的研发布了新的文献求助10
2秒前
奔奔完成签到,获得积分20
3秒前
贺贺发布了新的文献求助20
3秒前
大个应助银匠采纳,获得10
4秒前
Rainy完成签到,获得积分20
4秒前
5秒前
海棠朵朵完成签到 ,获得积分10
5秒前
yu完成签到,获得积分20
5秒前
5秒前
Owen应助金虎采纳,获得10
6秒前
mjr完成签到,获得积分10
6秒前
6秒前
NexusExplorer应助小于采纳,获得10
6秒前
7秒前
8秒前
上官若男应助金角大王采纳,获得10
8秒前
SciGPT应助liulongchao采纳,获得10
8秒前
徐丑发布了新的文献求助20
8秒前
嘎嘎嘎嘎发布了新的文献求助10
8秒前
Jenny完成签到,获得积分10
9秒前
wanci应助Li采纳,获得10
9秒前
星辰大海应助轻松的书南采纳,获得10
9秒前
9秒前
白斩鸡发布了新的文献求助10
11秒前
11秒前
和谐犀牛完成签到,获得积分10
11秒前
congconglyu发布了新的文献求助10
12秒前
12秒前
小迪完成签到,获得积分10
12秒前
13秒前
渊思发布了新的文献求助10
13秒前
FashionBoy应助schyoung采纳,获得10
14秒前
14秒前
幽默不乐完成签到,获得积分20
15秒前
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305256
求助须知:如何正确求助?哪些是违规求助? 2939124
关于积分的说明 8491585
捐赠科研通 2613571
什么是DOI,文献DOI怎么找? 1427501
科研通“疑难数据库(出版商)”最低求助积分说明 663054
邀请新用户注册赠送积分活动 647747