诱导多能干细胞
类有机物
再生医学
人体皮肤
干细胞
细胞生物学
脐带血
胚芽层
生物
免疫学
胚胎干细胞
遗传学
生物化学
基因
摘要
The skin is the body's largest organ and has many functions. The skin acts as a physical barrier and protector of the body and regulates bodily functions. Biomimetics is the imitation of the models, systems, and elements of nature for the purpose of solving complex human problems1. Skin biomimetics is a useful tool for in vitro disease research and in vivo regenerative medicine. Human induced pluripotent stem cells (iPSCs) have the characteristic of unlimited proliferation and the ability of differentiation to three germ layers. Human iPSCs are generated from various primary cells, such as blood cells, keratinocytes, fibroblasts, and more. Among them, cord blood mononuclear cells (CBMCs) have emerged as an alternative cell source from the perspective of allogeneic regenerative medicine. CBMCs are useful in regenerative medicine because human leukocyte antigen (HLA) typing is essential to the cell banking system. We provide a method for the differentiation of CBMC-iPSCs into keratinocytes and fibroblasts and for generation of a 3D skin organoid. CBMC-iPSC-derived keratinocytes and fibroblasts have characteristics similar to a primary cell line. The 3D skin organoids are generated by overlaying an epidermal layer onto a dermal layer. By transplanting this 3D skin organoid, a humanized mice model is generated. This study shows that a 3D human iPSC-derived skin organoid may be a novel, alternative tool for dermatologic research in vitro and in vivo.
科研通智能强力驱动
Strongly Powered by AbleSci AI