解决方案
索波列夫空间
数学
换向器
非线性系统
数学分析
规范(哲学)
操作员(生物学)
等价(形式语言)
散射
高斯分布
应用数学
纯数学
物理
域代数上的
量子力学
生物化学
化学
李共形代数
抑制因子
政治学
转录因子
法学
基因
作者
Vladimir Georgiev,Chunhua Li
标识
DOI:10.1016/j.physd.2019.03.010
摘要
We consider the scattering problem for the nonlinear Schrödinger equation with a potential in two space dimensions. Appropriate resolvent estimates are proved and applied to estimate the operator A(s) appearing in commutator relations. The equivalence between the operators −ΔVs2 and −Δs2 in L2 norm sense for 0≤s<1 is investigated by using free resolvent estimates and Gaussian estimates for the heat kernel of the Schrödinger operator −ΔV. Our main result guarantees the global existence of solutions and time decay of the solutions assuming initial data have small weighted Sobolev norms. Moreover, the global solutions obtained in the main result scatter.
科研通智能强力驱动
Strongly Powered by AbleSci AI