The utility of quantitative CT radiomics features for improved prediction of radiation pneumonitis

无线电技术 背景(考古学) 逻辑回归 医学 核医学 Lasso(编程语言) 放射治疗 放射科 肺癌 计算机科学 内科学 生物 万维网 古生物学
作者
Shane P. Krafft,Arvind Rao,Francesco C. Stingo,Tina M. Briere,Laurence E. Court,Zhongxing Liao,Mary K. Martel
出处
期刊:Medical Physics [Wiley]
卷期号:45 (11): 5317-5324 被引量:90
标识
DOI:10.1002/mp.13150
摘要

Purpose The purpose of this study was to explore gains in predictive model performance for radiation pneumonitis ( RP ) using pretreatment CT radiomics features extracted from the normal lung volume. Methods A total of 192 patients treated for nonsmall cell lung cancer with definitive radiotherapy were considered in the current study. In addition to clinical and dosimetric data, CT radiomics features were extracted from the total lung volume defined using the treatment planning scan. A total of 6851 features (15 clinical, 298 total lung and heart dosimetric, and 6538 image features) were gathered and considered candidate predictors for modeling of RP grade ≥3. Models were built with the least absolute shrinkage and selection operator ( LASSO ) logistic regression and applied to the set of candidate predictors with 50 iterations of tenfold nested cross‐validation. Results In the current cohort, 30 of 192 patients (15.6%) presented with RP grade ≥3. Average cross‐validated AUC ( CV ‐ AUC ) using only the clinical and dosimetric parameters was 0.51. CV ‐ AUC was 0.68 when total lung CT radiomics features were added. Analysis with the entire set of available predictors revealed seven different image features selected in at least 40% of the model fits. Conclusions We have successfully incorporated CT radiomics features into a framework for building predictive RP models via LASSO logistic regression. Addition of normal lung image features produced superior model performance relative to traditional dosimetric and clinical predictors of RP , suggesting that pretreatment CT radiomics features should be considered in the context of RP prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
JD完成签到 ,获得积分20
3秒前
3秒前
6秒前
Orange应助开放的果汁采纳,获得10
7秒前
zhengke924发布了新的文献求助10
8秒前
科研通AI2S应助清梦采纳,获得10
8秒前
9秒前
汉堡包应助Amadeus采纳,获得10
9秒前
wy完成签到,获得积分10
10秒前
多经历经历完成签到,获得积分10
10秒前
Emma施施完成签到,获得积分10
11秒前
11秒前
优雅惜雪发布了新的文献求助10
12秒前
13秒前
13秒前
Hhhhhhu完成签到,获得积分10
13秒前
14秒前
14秒前
16秒前
小伏关注了科研通微信公众号
16秒前
方法完成签到,获得积分10
16秒前
Fan发布了新的文献求助10
18秒前
老实的孤丹完成签到,获得积分10
18秒前
hbjadekylin发布了新的文献求助10
18秒前
今后应助cang采纳,获得10
19秒前
19秒前
20秒前
开心罡完成签到 ,获得积分10
20秒前
小宋应助科研达人采纳,获得10
21秒前
思源应助科研达人采纳,获得30
21秒前
星辰大海应助科研达人采纳,获得10
21秒前
21秒前
22秒前
23秒前
慕青应助杰尼龟采纳,获得10
23秒前
25秒前
思敏发布了新的文献求助30
26秒前
26秒前
ryen发布了新的文献求助10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Host Response to Biomaterials 2000
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553842
求助须知:如何正确求助?哪些是违规求助? 3129593
关于积分的说明 9383508
捐赠科研通 2828757
什么是DOI,文献DOI怎么找? 1555168
邀请新用户注册赠送积分活动 725867
科研通“疑难数据库(出版商)”最低求助积分说明 715320