油藏计算
计算机科学
激光器
光子学
半导体激光器理论
混乱的
波形
电子工程
光电子学
光学
材料科学
物理
电信
工程类
机器学习
循环神经网络
人工神经网络
雷达
人工智能
作者
Chihiro Sugano,Kazutaka Kanno,Atsushi Uchida
标识
DOI:10.1109/jstqe.2019.2929179
摘要
We propose a scheme for reservoir computing using multiple semiconductor lasers with optical feedback arranged in parallel on a photonic integrated circuit, and we investigate the performance of reservoir computing numerically. The virtual nodes are obtained from the temporal waveforms of the outputs of the parallel reservoir lasers. We test the chaotic time-series prediction task, memory capacity, and nonlinear channel equalization task to investigate the performance of reservoir computing. We found that our scheme using multiple lasers outperforms that using a single laser with multiple delay times. Large memory capacity can also be obtained for the multiple lasers. Finally, we investigate the effect of parameter mismatch of the multiple lasers on reservoir computing performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI