Progress in development of electrolytes for magnesium batteries

电解质 阳极 材料科学 阴极 电池(电) 能量密度 有机自由基电池 储能 纳米技术 商业化 电极 工程物理 电气工程 化学 冶金 工程类 物理 物理化学 法学 功率(物理) 量子力学 政治学
作者
Ramasubramonian Deivanayagam,Brian J. Ingram,Reza Shahbazian‐Yassar
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:21: 136-153 被引量:216
标识
DOI:10.1016/j.ensm.2019.05.028
摘要

Over the last few years, there has been an increased interest in developing safe, next-generation battery systems that offer energy densities higher than those of lithium-based batteries. In this context, batteries based on multivalent-ions (Mg2+, Zn2+, Ca2+, and Al3+) have developed their own niche with their capability to achieve at least twice the energy density of monovalent-ion systems such as Li-ion and Na-ion batteries. Among the multivalent-ion battery candidates, magnesium (Mg) batteries appear to be the most viable choice to eventually replace the Li-ion technology because of the high electrode potential, superior safety, and high abundance of Mg-metal. However, the limited development in electrolytes and cathodes has prevented their commercialization to date. There is a lack of suitable electrolytes that can be used at high voltages required for Mg2+ insertion into cathode hosts. The limited compatibility of organic electrolytes with Mg-metal anode is also a challenge, which requires extensive studies of the metal/electrolyte interactions. Such studies over the last two decades were critical in developing state-of-the-art Mg electrolytes that possess voltage windows of >4.0 V and simultaneously be compatible with Mg-metal anodes. Here, we present a review on the development of Mg battery electrolytes, challenges that impede their performance, and promising strategies that have been adopted to address them. We believe that this comprehensive review covering all three categories of Mg electrolytes (liquids, polymers, and solids) would enable researchers to get a quick grasp of the prevailing challenges, and consequently motivate them to develop novel electrolyte candidates.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Christina完成签到 ,获得积分10
刚刚
刚刚
充电宝应助小陈采纳,获得10
刚刚
李卓应助妩媚的安双采纳,获得10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
dongdong完成签到,获得积分10
3秒前
hhh完成签到 ,获得积分10
4秒前
浅柠半夏发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
STT发布了新的文献求助10
5秒前
lin发布了新的文献求助30
5秒前
5秒前
JJ完成签到,获得积分10
5秒前
梅残风暖完成签到,获得积分10
5秒前
李健应助江左1998采纳,获得10
5秒前
6秒前
6秒前
dongdong发布了新的文献求助10
6秒前
6秒前
意难平完成签到 ,获得积分10
6秒前
春儿完成签到,获得积分10
7秒前
8秒前
yrr发布了新的文献求助10
8秒前
青科腾龙发布了新的文献求助10
9秒前
Criminology34应助山野村夫采纳,获得10
9秒前
9秒前
ahryue完成签到,获得积分10
9秒前
ACMI发布了新的文献求助10
9秒前
23发布了新的文献求助10
9秒前
义气尔安完成签到,获得积分10
10秒前
10秒前
科研通AI6.1应助一一采纳,获得10
10秒前
红毛兔完成签到,获得积分10
11秒前
黄景滨发布了新的文献求助10
12秒前
英姑应助化工渣渣采纳,获得10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750276
求助须知:如何正确求助?哪些是违规求助? 5463221
关于积分的说明 15366303
捐赠科研通 4889428
什么是DOI,文献DOI怎么找? 2629165
邀请新用户注册赠送积分活动 1577481
关于科研通互助平台的介绍 1533992