Progress in development of electrolytes for magnesium batteries

电解质 阳极 材料科学 阴极 电池(电) 能量密度 有机自由基电池 储能 纳米技术 商业化 电极 工程物理 电气工程 化学 冶金 工程类 物理 物理化学 法学 功率(物理) 量子力学 政治学
作者
Ramasubramonian Deivanayagam,Brian J. Ingram,Reza Shahbazian‐Yassar
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:21: 136-153 被引量:216
标识
DOI:10.1016/j.ensm.2019.05.028
摘要

Over the last few years, there has been an increased interest in developing safe, next-generation battery systems that offer energy densities higher than those of lithium-based batteries. In this context, batteries based on multivalent-ions (Mg2+, Zn2+, Ca2+, and Al3+) have developed their own niche with their capability to achieve at least twice the energy density of monovalent-ion systems such as Li-ion and Na-ion batteries. Among the multivalent-ion battery candidates, magnesium (Mg) batteries appear to be the most viable choice to eventually replace the Li-ion technology because of the high electrode potential, superior safety, and high abundance of Mg-metal. However, the limited development in electrolytes and cathodes has prevented their commercialization to date. There is a lack of suitable electrolytes that can be used at high voltages required for Mg2+ insertion into cathode hosts. The limited compatibility of organic electrolytes with Mg-metal anode is also a challenge, which requires extensive studies of the metal/electrolyte interactions. Such studies over the last two decades were critical in developing state-of-the-art Mg electrolytes that possess voltage windows of >4.0 V and simultaneously be compatible with Mg-metal anodes. Here, we present a review on the development of Mg battery electrolytes, challenges that impede their performance, and promising strategies that have been adopted to address them. We believe that this comprehensive review covering all three categories of Mg electrolytes (liquids, polymers, and solids) would enable researchers to get a quick grasp of the prevailing challenges, and consequently motivate them to develop novel electrolyte candidates.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kiana发布了新的文献求助10
刚刚
wangruize完成签到,获得积分10
1秒前
1秒前
1秒前
蓦然回首完成签到,获得积分10
2秒前
小璐璐呀发布了新的文献求助10
2秒前
小白发布了新的文献求助10
2秒前
Bazinga完成签到,获得积分10
3秒前
冷冷发布了新的文献求助10
3秒前
箐233完成签到,获得积分10
3秒前
孤独音响发布了新的文献求助10
3秒前
聪明煎蛋完成签到,获得积分10
4秒前
lalala发布了新的文献求助10
4秒前
承乐发布了新的文献求助30
5秒前
zmin发布了新的文献求助10
5秒前
Doogie完成签到,获得积分10
5秒前
monkey发布了新的文献求助50
6秒前
6秒前
顾矜应助小何采纳,获得10
6秒前
guaishou完成签到,获得积分10
6秒前
6秒前
7秒前
李健应助小白采纳,获得10
7秒前
冰冰发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
爆米花应助Windsea采纳,获得10
7秒前
9秒前
Z2H完成签到,获得积分10
9秒前
依旧完成签到 ,获得积分10
9秒前
9秒前
10秒前
taotie发布了新的文献求助10
11秒前
windflake完成签到,获得积分10
11秒前
11秒前
zmin完成签到,获得积分10
11秒前
魔幻大有发布了新的文献求助10
11秒前
12秒前
LQQ发布了新的文献求助10
12秒前
FashionBoy应助WH采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809