已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A machine learning model to predict the risk of 30-day readmissions in patients with heart failure: a retrospective analysis of electronic medical records data

健康信息学 医疗保健 医学 逻辑回归 统计的 计算机科学 人工智能 病历 一致性 梯度升压 预测建模 机器学习 数据挖掘 急诊医学 统计 随机森林 公共卫生 外科 内科学 经济增长 护理部 经济 数学
作者
Sara Golas,Takuma Shibahara,Stephen Agboola,Hiroko Otaki,Jumpei Sato,Tatsuya Nakae,Toru Hisamitsu,Go Kojima,Jennifer Felsted,Sujay Kakarmath,Joseph C. Kvedar,Kamal Jethwani
出处
期刊:BMC Medical Informatics and Decision Making [Springer Nature]
卷期号:18 (1) 被引量:212
标识
DOI:10.1186/s12911-018-0620-z
摘要

Heart failure is one of the leading causes of hospitalization in the United States. Advances in big data solutions allow for storage, management, and mining of large volumes of structured and semi-structured data, such as complex healthcare data. Applying these advances to complex healthcare data has led to the development of risk prediction models to help identify patients who would benefit most from disease management programs in an effort to reduce readmissions and healthcare cost, but the results of these efforts have been varied. The primary aim of this study was to develop a 30-day readmission risk prediction model for heart failure patients discharged from a hospital admission. We used longitudinal electronic medical record data of heart failure patients admitted within a large healthcare system. Feature vectors included structured demographic, utilization, and clinical data, as well as selected extracts of un-structured data from clinician-authored notes. The risk prediction model was developed using deep unified networks (DUNs), a new mesh-like network structure of deep learning designed to avoid over-fitting. The model was validated with 10-fold cross-validation and results compared to models based on logistic regression, gradient boosting, and maxout networks. Overall model performance was assessed using concordance statistic. We also selected a discrimination threshold based on maximum projected cost saving to the Partners Healthcare system. Data from 11,510 patients with 27,334 admissions and 6369 30-day readmissions were used to train the model. After data processing, the final model included 3512 variables. The DUNs model had the best performance after 10-fold cross-validation. AUCs for prediction models were 0.664 ± 0.015, 0.650 ± 0.011, 0.695 ± 0.016 and 0.705 ± 0.015 for logistic regression, gradient boosting, maxout networks, and DUNs respectively. The DUNs model had an accuracy of 76.4% at the classification threshold that corresponded with maximum cost saving to the hospital. Deep learning techniques performed better than other traditional techniques in developing this EMR-based prediction model for 30-day readmissions in heart failure patients. Such models can be used to identify heart failure patients with impending hospitalization, enabling care teams to target interventions at their most high-risk patients and improving overall clinical outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小心完成签到 ,获得积分10
3秒前
干辣椒完成签到 ,获得积分10
5秒前
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
7秒前
Shumin Wang发布了新的文献求助10
12秒前
youngyang完成签到 ,获得积分10
15秒前
稳重的若雁完成签到,获得积分10
17秒前
古德豹发布了新的文献求助10
18秒前
19秒前
cy0824完成签到 ,获得积分10
22秒前
23秒前
23秒前
rita_sun1969完成签到,获得积分10
24秒前
24秒前
快乐寄风完成签到 ,获得积分10
25秒前
Rational发布了新的文献求助30
25秒前
Shumin Wang完成签到,获得积分20
28秒前
29秒前
阿珩发布了新的文献求助10
30秒前
日新又新完成签到,获得积分10
32秒前
36秒前
阿珩完成签到,获得积分10
39秒前
yzthk完成签到 ,获得积分10
40秒前
winfree完成签到 ,获得积分10
41秒前
快乐咸鱼发布了新的文献求助10
42秒前
48秒前
酷波er应助古德豹采纳,获得10
49秒前
luroa完成签到 ,获得积分10
52秒前
54秒前
超级小熊猫完成签到 ,获得积分10
56秒前
banbieshenlu完成签到,获得积分10
1分钟前
整齐的惮完成签到 ,获得积分10
1分钟前
1分钟前
丘比特应助Lori采纳,获得30
1分钟前
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146623
求助须知:如何正确求助?哪些是违规求助? 2797931
关于积分的说明 7826191
捐赠科研通 2454463
什么是DOI,文献DOI怎么找? 1306280
科研通“疑难数据库(出版商)”最低求助积分说明 627692
版权声明 601522