A machine learning model to predict the risk of 30-day readmissions in patients with heart failure: a retrospective analysis of electronic medical records data

健康信息学 医疗保健 医学 逻辑回归 统计的 计算机科学 人工智能 病历 一致性 梯度升压 预测建模 机器学习 数据挖掘 急诊医学 统计 随机森林 公共卫生 外科 内科学 经济增长 护理部 经济 数学
作者
Sara Golas,Takuma Shibahara,Stephen Agboola,Hiroko Otaki,Jumpei Sato,Tatsuya Nakae,Toru Hisamitsu,Go Kojima,Jennifer Felsted,Sujay Kakarmath,Joseph C. Kvedar,Kamal Jethwani
出处
期刊:BMC Medical Informatics and Decision Making [BioMed Central]
卷期号:18 (1) 被引量:212
标识
DOI:10.1186/s12911-018-0620-z
摘要

Heart failure is one of the leading causes of hospitalization in the United States. Advances in big data solutions allow for storage, management, and mining of large volumes of structured and semi-structured data, such as complex healthcare data. Applying these advances to complex healthcare data has led to the development of risk prediction models to help identify patients who would benefit most from disease management programs in an effort to reduce readmissions and healthcare cost, but the results of these efforts have been varied. The primary aim of this study was to develop a 30-day readmission risk prediction model for heart failure patients discharged from a hospital admission. We used longitudinal electronic medical record data of heart failure patients admitted within a large healthcare system. Feature vectors included structured demographic, utilization, and clinical data, as well as selected extracts of un-structured data from clinician-authored notes. The risk prediction model was developed using deep unified networks (DUNs), a new mesh-like network structure of deep learning designed to avoid over-fitting. The model was validated with 10-fold cross-validation and results compared to models based on logistic regression, gradient boosting, and maxout networks. Overall model performance was assessed using concordance statistic. We also selected a discrimination threshold based on maximum projected cost saving to the Partners Healthcare system. Data from 11,510 patients with 27,334 admissions and 6369 30-day readmissions were used to train the model. After data processing, the final model included 3512 variables. The DUNs model had the best performance after 10-fold cross-validation. AUCs for prediction models were 0.664 ± 0.015, 0.650 ± 0.011, 0.695 ± 0.016 and 0.705 ± 0.015 for logistic regression, gradient boosting, maxout networks, and DUNs respectively. The DUNs model had an accuracy of 76.4% at the classification threshold that corresponded with maximum cost saving to the hospital. Deep learning techniques performed better than other traditional techniques in developing this EMR-based prediction model for 30-day readmissions in heart failure patients. Such models can be used to identify heart failure patients with impending hospitalization, enabling care teams to target interventions at their most high-risk patients and improving overall clinical outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
young完成签到,获得积分10
刚刚
I1waml完成签到 ,获得积分10
刚刚
Queen发布了新的文献求助20
1秒前
1秒前
123发布了新的文献求助10
1秒前
sc发布了新的文献求助10
2秒前
ZZQ完成签到 ,获得积分20
2秒前
3秒前
无忧无虑完成签到,获得积分10
3秒前
3秒前
li完成签到 ,获得积分10
4秒前
清嘉发布了新的文献求助10
5秒前
林夕少爷完成签到,获得积分10
5秒前
5秒前
QAQ发布了新的文献求助10
6秒前
丁一完成签到,获得积分10
6秒前
6秒前
爱博完成签到,获得积分10
6秒前
Huimin完成签到,获得积分10
6秒前
junfeiwang发布了新的文献求助10
7秒前
zbq来完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
小风铃完成签到,获得积分10
9秒前
9秒前
陳某完成签到,获得积分10
9秒前
9秒前
一一完成签到,获得积分10
9秒前
万能图书馆应助乌拉挂机采纳,获得10
10秒前
yxsh发布了新的文献求助10
10秒前
科研狗的春天完成签到 ,获得积分10
11秒前
小汪完成签到,获得积分10
11秒前
儒雅从筠完成签到,获得积分10
11秒前
李新宇完成签到 ,获得积分10
11秒前
YY发布了新的文献求助10
11秒前
清嘉完成签到,获得积分10
11秒前
13秒前
小迟发布了新的文献求助30
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950365
求助须知:如何正确求助?哪些是违规求助? 3495846
关于积分的说明 11078987
捐赠科研通 3226245
什么是DOI,文献DOI怎么找? 1783653
邀请新用户注册赠送积分活动 867728
科研通“疑难数据库(出版商)”最低求助积分说明 800926