Human urine kininogenase attenuates balloon-induced intimal hyperplasia in rabbit carotid artery through transforming growth factor β1/Smad2/3 signaling pathway

新生内膜 医学 内膜增生 伊诺斯 再狭窄 内膜 球囊导管 病理 一氧化氮合酶 内科学 一氧化氮 气球 支架 颈动脉 平滑肌
作者
Wenya Lan,Fang Yang,Zhuangli Li,Ling Liu,Renliang Zhang,Yanrui Jiang,Yunyun Xiong,Renliang Zhang
出处
期刊:Journal of Vascular Surgery [Elsevier]
卷期号:64 (4): 1074-1083 被引量:9
标识
DOI:10.1016/j.jvs.2015.04.433
摘要

ObjectiveEffective treatments against restenosis after percutaneous transluminal angioplasty and stenting are largely lacking. Human tissue kallikrein gene transfer has been shown to be able to attenuate neointima formation induced by balloon catheter. As a tissue kallikrein in vivo, human urinary kininogenase (HUK) is widely used to prevent ischemia-reperfusion injury. However, the effects of HUK on neointima formation have not been explored. We therefore investigated whether HUK could alleviate balloon catheter-induced intimal hyperplasia in rabbits fed with high-fat diets.MethodsThe effects of HUK on neointima and atherosclerosis formation were analyzed by hematoxylin-eosin staining and immunohistochemical staining in balloon-injured carotid arteries of rabbits. Local inflammatory response was evaluated by detecting the gene expression of tumor necrosis factor α and interleukin 1β with real-time quantitative polymerase chain reaction plus the invasion of macrophages with immunohistochemical staining. Western blotting was employed to investigate the effects of HUK on activities of endothelial nitric oxide synthase (eNOS), transforming growth factor β1 (TGF-β1), and Smad signaling pathway. The long-term effect of HUK on intimal hyperplasia of the injured carotid artery was assessed by angiography.ResultsQuantitative image analysis showed that intravenous administration of HUK for 14 days significantly decreased the intimal areas and intima area/media area ratios (day 14, 54% decrease in intimal area and 58% decrease in intima area/media area ratios; day 28, 63% and 85%). Significant decreases were also noted in macrophage foam cell-positive area after 7-day or 14-day administration of HUK (day 7, 69% decrease in intimal area and 78% decrease in media area; day 14, 79% and 60%; day 28, 68% and 44%). Actin staining for smooth muscle cells in neointima at 2 months showed similar results (vascular smooth muscle cell-positive area of neointima, 28.21% ± 5.58% vs 43.78% ± 8.36%; P < .05). Real-time quantitative polymerase chain reaction or Western blot analysis showed that HUK reduced expression of tumor necrosis factor α, interleukin 1β, TGF-β1, and p-Smad2/3 but increased the expression of p-eNOS. Angiography analysis showed that 14-day administration of HUK significantly decreased the degree of stenosis (26.8% ± 7.1% vs 47.9% ± 5.7%; P < .01) at 2 months after balloon injury.ConclusionsOur results indicate that HUK is able to attenuate atherosclerosis formation and to inhibit intimal hyperplasia by downregulating TGF-β1 expression and Smad2/3 phosphorylation, upregulating eNOS activity. HUK may be a potential therapeutic agent to prevent stenosis after vascular injury. Effective treatments against restenosis after percutaneous transluminal angioplasty and stenting are largely lacking. Human tissue kallikrein gene transfer has been shown to be able to attenuate neointima formation induced by balloon catheter. As a tissue kallikrein in vivo, human urinary kininogenase (HUK) is widely used to prevent ischemia-reperfusion injury. However, the effects of HUK on neointima formation have not been explored. We therefore investigated whether HUK could alleviate balloon catheter-induced intimal hyperplasia in rabbits fed with high-fat diets. The effects of HUK on neointima and atherosclerosis formation were analyzed by hematoxylin-eosin staining and immunohistochemical staining in balloon-injured carotid arteries of rabbits. Local inflammatory response was evaluated by detecting the gene expression of tumor necrosis factor α and interleukin 1β with real-time quantitative polymerase chain reaction plus the invasion of macrophages with immunohistochemical staining. Western blotting was employed to investigate the effects of HUK on activities of endothelial nitric oxide synthase (eNOS), transforming growth factor β1 (TGF-β1), and Smad signaling pathway. The long-term effect of HUK on intimal hyperplasia of the injured carotid artery was assessed by angiography. Quantitative image analysis showed that intravenous administration of HUK for 14 days significantly decreased the intimal areas and intima area/media area ratios (day 14, 54% decrease in intimal area and 58% decrease in intima area/media area ratios; day 28, 63% and 85%). Significant decreases were also noted in macrophage foam cell-positive area after 7-day or 14-day administration of HUK (day 7, 69% decrease in intimal area and 78% decrease in media area; day 14, 79% and 60%; day 28, 68% and 44%). Actin staining for smooth muscle cells in neointima at 2 months showed similar results (vascular smooth muscle cell-positive area of neointima, 28.21% ± 5.58% vs 43.78% ± 8.36%; P < .05). Real-time quantitative polymerase chain reaction or Western blot analysis showed that HUK reduced expression of tumor necrosis factor α, interleukin 1β, TGF-β1, and p-Smad2/3 but increased the expression of p-eNOS. Angiography analysis showed that 14-day administration of HUK significantly decreased the degree of stenosis (26.8% ± 7.1% vs 47.9% ± 5.7%; P < .01) at 2 months after balloon injury. Our results indicate that HUK is able to attenuate atherosclerosis formation and to inhibit intimal hyperplasia by downregulating TGF-β1 expression and Smad2/3 phosphorylation, upregulating eNOS activity. HUK may be a potential therapeutic agent to prevent stenosis after vascular injury.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
loren完成签到 ,获得积分10
刚刚
11完成签到,获得积分20
4秒前
默默犀牛发布了新的文献求助30
6秒前
6秒前
cbum完成签到,获得积分10
8秒前
科研通AI6应助kRAY采纳,获得30
8秒前
10秒前
jia完成签到,获得积分20
10秒前
BowieHuang应助科研通管家采纳,获得10
10秒前
心心应助科研通管家采纳,获得10
10秒前
江川锦鲤发布了新的文献求助10
10秒前
坚定晓兰应助科研通管家采纳,获得10
10秒前
shinen完成签到,获得积分10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
我是老大应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
tingting1应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
ding应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
HarryYang完成签到 ,获得积分10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
11秒前
浮游应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536747
求助须知:如何正确求助?哪些是违规求助? 4624321
关于积分的说明 14591612
捐赠科研通 4564876
什么是DOI,文献DOI怎么找? 2501995
邀请新用户注册赠送积分活动 1480690
关于科研通互助平台的介绍 1451972