Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network

自编码 计算机科学 聚类分析 人工智能 模式识别(心理学) 数据挖掘 人工神经网络 可扩展性 深度学习 机器学习 数据库
作者
Yanglan Gan,Xingyu Huang,Guobing Zou,Shuigeng Zhou,Jihong Guan
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (2) 被引量:22
标识
DOI:10.1093/bib/bbac018
摘要

Abstract Single-cell RNA sequencing (scRNA-seq) permits researchers to study the complex mechanisms of cell heterogeneity and diversity. Unsupervised clustering is of central importance for the analysis of the scRNA-seq data, as it can be used to identify putative cell types. However, due to noise impacts, high dimensionality and pervasive dropout events, clustering analysis of scRNA-seq data remains a computational challenge. Here, we propose a new deep structural clustering method for scRNA-seq data, named scDSC, which integrate the structural information into deep clustering of single cells. The proposed scDSC consists of a Zero-Inflated Negative Binomial (ZINB) model-based autoencoder, a graph neural network (GNN) module and a mutual-supervised module. To learn the data representation from the sparse and zero-inflated scRNA-seq data, we add a ZINB model to the basic autoencoder. The GNN module is introduced to capture the structural information among cells. By joining the ZINB-based autoencoder with the GNN module, the model transfers the data representation learned by autoencoder to the corresponding GNN layer. Furthermore, we adopt a mutual supervised strategy to unify these two different deep neural architectures and to guide the clustering task. Extensive experimental results on six real scRNA-seq datasets demonstrate that scDSC outperforms state-of-the-art methods in terms of clustering accuracy and scalability. Our method scDSC is implemented in Python using the Pytorch machine-learning library, and it is freely available at https://github.com/DHUDBlab/scDSC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiajia完成签到,获得积分20
1秒前
1秒前
隐形曼青应助第七个星球采纳,获得10
2秒前
无花果应助zy采纳,获得10
2秒前
liyingyan发布了新的文献求助20
2秒前
2秒前
2秒前
华仔应助ii采纳,获得10
2秒前
沉静沛凝发布了新的文献求助10
3秒前
无敌的兔子宇宙完成签到,获得积分10
3秒前
bkagyin应助sifLiu采纳,获得30
3秒前
能干的初瑶完成签到,获得积分10
3秒前
tangtang发布了新的文献求助10
4秒前
4秒前
我是老大应助旺旺采纳,获得10
4秒前
柿子完成签到 ,获得积分10
4秒前
4秒前
engine完成签到,获得积分10
4秒前
调皮的大炮完成签到 ,获得积分10
4秒前
5秒前
5秒前
Hong完成签到 ,获得积分10
5秒前
儒雅非笑发布了新的文献求助10
5秒前
甜菜完成签到,获得积分10
5秒前
6秒前
小巧的平露完成签到,获得积分20
6秒前
思源应助快乐的访烟采纳,获得10
6秒前
Orange应助噜噜大王采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
qing完成签到,获得积分20
7秒前
尊敬怀薇完成签到,获得积分10
8秒前
8秒前
黄瓜仔发布了新的文献求助10
9秒前
9秒前
gy发布了新的文献求助10
10秒前
10秒前
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444