Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network

自编码 计算机科学 聚类分析 人工智能 模式识别(心理学) 数据挖掘 人工神经网络 可扩展性 深度学习 机器学习 数据库
作者
Yanglan Gan,Xingyu Huang,Guobing Zou,Shuigeng Zhou,Jihong Guan
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (2) 被引量:22
标识
DOI:10.1093/bib/bbac018
摘要

Abstract Single-cell RNA sequencing (scRNA-seq) permits researchers to study the complex mechanisms of cell heterogeneity and diversity. Unsupervised clustering is of central importance for the analysis of the scRNA-seq data, as it can be used to identify putative cell types. However, due to noise impacts, high dimensionality and pervasive dropout events, clustering analysis of scRNA-seq data remains a computational challenge. Here, we propose a new deep structural clustering method for scRNA-seq data, named scDSC, which integrate the structural information into deep clustering of single cells. The proposed scDSC consists of a Zero-Inflated Negative Binomial (ZINB) model-based autoencoder, a graph neural network (GNN) module and a mutual-supervised module. To learn the data representation from the sparse and zero-inflated scRNA-seq data, we add a ZINB model to the basic autoencoder. The GNN module is introduced to capture the structural information among cells. By joining the ZINB-based autoencoder with the GNN module, the model transfers the data representation learned by autoencoder to the corresponding GNN layer. Furthermore, we adopt a mutual supervised strategy to unify these two different deep neural architectures and to guide the clustering task. Extensive experimental results on six real scRNA-seq datasets demonstrate that scDSC outperforms state-of-the-art methods in terms of clustering accuracy and scalability. Our method scDSC is implemented in Python using the Pytorch machine-learning library, and it is freely available at https://github.com/DHUDBlab/scDSC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
chriselva完成签到,获得积分10
1秒前
123发布了新的文献求助10
1秒前
wol007完成签到 ,获得积分10
1秒前
Left完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
ting关注了科研通微信公众号
4秒前
sswbzh应助xt采纳,获得50
4秒前
皆非i发布了新的文献求助10
4秒前
Ee完成签到,获得积分10
7秒前
有趣的银发布了新的文献求助10
8秒前
off完成签到,获得积分10
8秒前
senli2018发布了新的文献求助10
9秒前
眼睛大巧荷完成签到,获得积分10
10秒前
orixero应助云瑾采纳,获得10
11秒前
咕咕完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
14秒前
didi发布了新的文献求助20
15秒前
15秒前
chi完成签到 ,获得积分10
16秒前
上官若男应助杜智敏采纳,获得10
16秒前
搜集达人应助成就凌香采纳,获得10
17秒前
17秒前
陈谨驳回了华仔应助
17秒前
浮游应助ywongmath采纳,获得10
18秒前
顺心凝海发布了新的文献求助10
19秒前
19秒前
俏皮夏菡发布了新的文献求助10
19秒前
赵乂发布了新的文献求助10
19秒前
小白发布了新的文献求助10
19秒前
小二郎应助SY采纳,获得10
19秒前
顾矜应助Hommand_藏山采纳,获得10
19秒前
20秒前
21秒前
隐形曼青应助英俊的白安采纳,获得10
22秒前
哈哈哈完成签到 ,获得积分10
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694525
求助须知:如何正确求助?哪些是违规求助? 5097567
关于积分的说明 15213869
捐赠科研通 4851086
什么是DOI,文献DOI怎么找? 2602107
邀请新用户注册赠送积分活动 1554007
关于科研通互助平台的介绍 1511898