亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FxP-QNet: A Post-Training Quantizer for the Design of Mixed Low-Precision DNNs With Dynamic Fixed-Point Representation

量化(信号处理) 计算机科学 推论 计算机工程 深度学习 人工神经网络 浮点型 深层神经网络 水准点(测量) 计算 人工智能 算法 机器学习 大地测量学 地理
作者
Ahmad Shawahna,Sadiq M. Sait,Aiman H. El‐Maleh,Irfan Ahmad
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 30202-30231 被引量:6
标识
DOI:10.1109/access.2022.3157893
摘要

Deep neural networks (DNNs) have demonstrated their effectiveness in a wide range of computer vision tasks, with the state-of-the-art results obtained through complex and deep structures that require intensive computation and memory. Now-a-days, efficient model inference is crucial for consumer applications on resource-constrained platforms. As a result, there is much interest in the research and development of dedicated deep learning (DL) hardware to improve the throughput and energy efficiency of DNNs. Low-precision representation of DNN data-structures through quantization would bring great benefits to specialized DL hardware. However, the rigorous quantization leads to a severe accuracy drop. As such, quantization opens a large hyper-parameter space at bit-precision levels, the exploration of which is a major challenge. In this paper, we propose a novel framework referred to as the Fixed-Point Quantizer of deep neural Networks (FxP-QNet) that flexibly designs a mixed low-precision DNN for integer-arithmetic-only deployment. Specifically, the FxP-QNet gradually adapts the quantization level for each data-structure of each layer based on the trade-off between the network accuracy and the low-precision requirements. Additionally, it employs post-training self-distillation and network prediction error statistics to optimize the quantization of floating-point values into fixed-point numbers. Examining FxP-QNet on state-of-the-art architectures and the benchmark ImageNet dataset, we empirically demonstrate the effectiveness of FxP-QNet in achieving the accuracy-compression trade-off without the need for training. The results show that FxP-QNet-quantized AlexNet, VGG-16, and ResNet-18 reduce the overall memory requirements of their full-precision counterparts by 7.16x, 10.36x, and 6.44x with less than 0.95%, 0.95%, and 1.99% accuracy drop, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助西瓜嘻嘻嘻采纳,获得10
2秒前
吴昕昕发布了新的文献求助10
4秒前
未晚完成签到 ,获得积分10
6秒前
香蕉觅云应助Aqib采纳,获得10
10秒前
早晨发布了新的文献求助10
16秒前
孤鸿.完成签到 ,获得积分10
18秒前
20秒前
彭于晏应助11采纳,获得10
20秒前
21秒前
吴昕昕完成签到,获得积分10
22秒前
23秒前
iwaking完成签到,获得积分10
24秒前
hxn发布了新的文献求助30
27秒前
通通发布了新的文献求助10
27秒前
早晨完成签到,获得积分10
29秒前
Lucas应助通通采纳,获得10
35秒前
36秒前
WANG完成签到,获得积分10
39秒前
有机发布了新的文献求助10
40秒前
摆渡人完成签到,获得积分10
50秒前
提桶跑路完成签到 ,获得积分10
52秒前
温柔的天奇完成签到 ,获得积分10
56秒前
实验耗材完成签到 ,获得积分10
1分钟前
1分钟前
lhlhl完成签到,获得积分10
1分钟前
1分钟前
1分钟前
小小林发布了新的文献求助10
1分钟前
zl13332完成签到 ,获得积分10
1分钟前
1分钟前
通通完成签到 ,获得积分10
1分钟前
hhh完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
SUT文献战神完成签到,获得积分10
1分钟前
董可以发布了新的文献求助10
1分钟前
小二郎应助董可以采纳,获得10
1分钟前
花陵完成签到 ,获得积分10
1分钟前
含糊的无声完成签到 ,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990020
求助须知:如何正确求助?哪些是违规求助? 3532077
关于积分的说明 11256276
捐赠科研通 3270943
什么是DOI,文献DOI怎么找? 1805139
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228