FxP-QNet: A Post-Training Quantizer for the Design of Mixed Low-Precision DNNs With Dynamic Fixed-Point Representation

量化(信号处理) 计算机科学 推论 计算机工程 深度学习 人工神经网络 浮点型 深层神经网络 水准点(测量) 计算 人工智能 算法 机器学习 大地测量学 地理
作者
Ahmad Shawahna,Sadiq M. Sait,Aiman H. El‐Maleh,Irfan Ahmad
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 30202-30231 被引量:6
标识
DOI:10.1109/access.2022.3157893
摘要

Deep neural networks (DNNs) have demonstrated their effectiveness in a wide range of computer vision tasks, with the state-of-the-art results obtained through complex and deep structures that require intensive computation and memory. Now-a-days, efficient model inference is crucial for consumer applications on resource-constrained platforms. As a result, there is much interest in the research and development of dedicated deep learning (DL) hardware to improve the throughput and energy efficiency of DNNs. Low-precision representation of DNN data-structures through quantization would bring great benefits to specialized DL hardware. However, the rigorous quantization leads to a severe accuracy drop. As such, quantization opens a large hyper-parameter space at bit-precision levels, the exploration of which is a major challenge. In this paper, we propose a novel framework referred to as the Fixed-Point Quantizer of deep neural Networks (FxP-QNet) that flexibly designs a mixed low-precision DNN for integer-arithmetic-only deployment. Specifically, the FxP-QNet gradually adapts the quantization level for each data-structure of each layer based on the trade-off between the network accuracy and the low-precision requirements. Additionally, it employs post-training self-distillation and network prediction error statistics to optimize the quantization of floating-point values into fixed-point numbers. Examining FxP-QNet on state-of-the-art architectures and the benchmark ImageNet dataset, we empirically demonstrate the effectiveness of FxP-QNet in achieving the accuracy-compression trade-off without the need for training. The results show that FxP-QNet-quantized AlexNet, VGG-16, and ResNet-18 reduce the overall memory requirements of their full-precision counterparts by 7.16x, 10.36x, and 6.44x with less than 0.95%, 0.95%, and 1.99% accuracy drop, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
余额12138完成签到,获得积分10
1秒前
传奇3应助简单的惋庭采纳,获得10
2秒前
Jacky发布了新的文献求助10
2秒前
3秒前
YY发布了新的文献求助10
3秒前
CYAA完成签到,获得积分10
4秒前
科研通AI2S应助鲤鱼采纳,获得10
5秒前
倦梦还发布了新的文献求助10
5秒前
所所应助机灵笑萍采纳,获得10
8秒前
zhou完成签到 ,获得积分10
9秒前
9秒前
10秒前
cc发布了新的文献求助10
14秒前
15秒前
Jasper应助拉长的冰海采纳,获得10
16秒前
18秒前
18秒前
liu发布了新的文献求助10
18秒前
19秒前
小橘发布了新的文献求助30
20秒前
bamboo完成签到,获得积分10
20秒前
21秒前
佛系少年关注了科研通微信公众号
22秒前
22秒前
DZhou完成签到,获得积分10
23秒前
开朗的戎发布了新的文献求助10
25秒前
科研通AI2S应助早点睡觉吧采纳,获得10
25秒前
赘婿应助倦梦还采纳,获得10
26秒前
完美世界应助糟糕的霆采纳,获得10
26秒前
27秒前
lily完成签到,获得积分10
27秒前
可可西里发布了新的文献求助10
27秒前
27秒前
自由白山完成签到,获得积分10
28秒前
28秒前
甜蜜笑阳完成签到,获得积分10
29秒前
令狐剑通完成签到,获得积分10
30秒前
务实的宛发布了新的文献求助10
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139002
求助须知:如何正确求助?哪些是违规求助? 2789909
关于积分的说明 7793227
捐赠科研通 2446337
什么是DOI,文献DOI怎么找? 1301061
科研通“疑难数据库(出版商)”最低求助积分说明 626087
版权声明 601096