阿拉伯木聚糖
生物化学
酯酶
纤维素酶
阿魏酸
麸皮
化学
水解
酶
食品科学
生物
原材料
有机化学
作者
Ruiqin Zhang,Dongxia Lin,Liang Zhang,Ruoting Zhan,Sidi Wang,Kui Wang
标识
DOI:10.1021/acs.jafc.2c01019
摘要
A novel enzyme Bi76 comprising GH10, E_set_Esterase_N, and CE1 modules was identified, with the highest homology (62.9%) with a bifunctional endoxylanase/feruloyl esterase among characterized enzymes. Interestingly, Bi76 hydrolyzed glucan substrates besides xylans and feruloylated substrates, suggesting that it is the first characterized trifunctional endoxylanase/endoglucanase/feruloyl esterase. Analyses of truncation variants revealed that GH10 and E_set_Esterase_N + CE1 modules encoded endoxylanase/endoglucanase and feruloyl esterase activities, respectively. Synergism analyses indicated that endoxylanase, α-l-arabinofuranosidase, and feruloyl esterase acted cooperatively in releasing ferulic acid (FA) and xylooligosaccharides from feruloylated arabinoxylan. The interdomain synergism of Bi76 overmatched the intermolecular synergism of TM1 and TM2. Importantly, Bi76 exhibited good capacity in producing FA, releasing 5.20, 4.38, 2.12, 1.35, 0.46, and 0.19 mg/g from corn bran, corn cob, wheat bran, corn stover, rice husk, and rice bran, respectively. This study expands the trifunctional endoxylanase/endoglucanase/feruloyl esterase repertoire and demonstrates the great potential of Bi76 in agricultural residue utilization.
科研通智能强力驱动
Strongly Powered by AbleSci AI