睡眠剥夺
神经炎症
神经保护
PI3K/AKT/mTOR通路
蛋白激酶B
炎症
内分泌学
细胞凋亡
内科学
医学
睡眠(系统调用)
心理学
神经科学
生物
昼夜节律
生物化学
计算机科学
操作系统
作者
Yahui Wan,Wei Gao,Kaili Zhou,Xuan Liu,Wei Jiang,Rong Xue,Wei Wu
标识
DOI:10.1016/j.neulet.2022.136575
摘要
Sleep deprivation negatively influences cognition, however, the regulatory mechanisms to counteract this effect have not been identified. IGF-1 has been shown to be anti-inflammatory and neuroprotective in CNS injury models. In this study, we determined the impact of IGF-1 on brain injury and inflammation while modeling sleep deprivation. We found that IGF-1 was downregulated in human peripheral blood and in mice subjected to sleep deprivation for 5 days, with reduced activation of the downstream PI3K/AKT/GSK-3β pathway in mice brains. In addition, we found reduced levels of the anti-apoptosis enzyme Bcl-2 and increased levels of pro-apoptosis enzyme Caspase-9 expression, together with increased pro-inflammatory factors. The administration of IGF-1 after sleep deprivation induced activation of the PI3K/AKT/GSK-3β pathway, reversed changes in Bcl-2, Caspase-9, and pro-inflammatory factors, and alleviated cognitive impairment. Notably, IGF-1 also induced activation of the PI3K/AKT/GSK-3β pathway, and displayed anti-apoptosis and anti-inflammatory properties under normal sleep conditions,while IGF-1 did not improve the cognition under normal sleep conditions. These results suggest that the IGF-1/PI3K/AKT/GSK-3β pathway is involved in the regulation of cognitive function after sleep deprivation through modulation of apoptosis and inflammatory response. IGF-1 could be a viable therapeutic target, though further investigation is required to better understand its role in sleep deprivation.
科研通智能强力驱动
Strongly Powered by AbleSci AI