横杆开关
纳米光子学
计算机科学
利用
计算机网络
高效能源利用
网状网络
仲裁
吞吐量
计算机体系结构
拓扑(电路)
电信
分布式计算
无线
工程类
电气工程
纳米技术
材料科学
计算机安全
法学
政治学
作者
Yan Pan,Prabhat Kumar,John Kim,Gokhan Memik,Yu Zhang,Alok Choudhary
出处
期刊:Computer architecture news
[Association for Computing Machinery]
日期:2009-06-15
卷期号:37 (3): 429-440
被引量:84
标识
DOI:10.1145/1555815.1555808
摘要
Future many-core processors will require high-performance yet energy-efficient on-chip networks to provide a communication substrate for the increasing number of cores. Recent advances in silicon nanophotonics create new opportunities for on-chip networks. To efficiently exploit the benefits of nanophotonics, we propose Firefly - a hybrid, hierarchical network architecture. Firefly consists of clusters of nodes that are connected using conventional, electrical signaling while the inter-cluster communication is done using nanophotonics - exploiting the benefits of electrical signaling for short, local communication while nanophotonics is used only for global communication to realize an efficient on-chip network. Crossbar architecture is used for inter-cluster communication. However, to avoid global arbitration, the crossbar is partitioned into multiple, logical crossbars and their arbitration is localized. Our evaluations show that Firefly improves the performance by up to 57% compared to an all-electrical concentrated mesh (CMESH) topology on adversarial traffic patterns and up to 54% compared to an all-optical crossbar (OP XBAR) on traffic patterns with locality. If the energy-delay-product is compared, Firefly improves the efficiency of the on-chip network by up to 51% and 38% compared to CMESH and OP XBAR, respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI