A novel relevance-based information interaction model for community detection in complex networks

计算机科学 相关性(法律) 数据科学 复杂网络 节点(物理) 群落结构 鉴定(生物学) 过程(计算) 架空(工程) 数据挖掘 万维网 植物 数学 结构工程 组合数学 政治学 法学 生物 工程类 操作系统
作者
Aman Ullah,Bin Wang,Jinfang Sheng,Jun Long,Nasrullah Khan,Muhammad Ejaz
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:196: 116607-116607 被引量:1
标识
DOI:10.1016/j.eswa.2022.116607
摘要

Identification of patronized communities in a complex network structure is an essential aspect of network analysis. These identifications really become challenging when we come across the tasks of dealing with such large-scale community networks when their vertices and edges span over billions of entities like social media networks, news networks, welfare associations, NGO networks etc., to look for a pattern match. Although several incentive approaches have been developed and deployed to ease the process, still there is no valuable alleviation in the severity of the concern; for instance, some of the methods just consider the local information of a node in a network, whereas some of them consider only global information, and some more methods need end-users to provide advanced knowledge about the community structure. To cope with these research issues, an effective community detection approach is required to feasibly alleviate the computational overhead of dealing with the network. Therefore, we propose a novel Relevance-based Information Interaction Model (RIIM) to identify communities in complex networks based on local as well as global topological aspects without providing prior community knowledge and parameter configuration. In order to evaluate the effectiveness of RIIM, we conducted extensive experiments on real and synthetic networks, and the generated performance demonstrates that the proposed approach outperformed the state-of-the-art techniques by effectively identifying the corresponding communities in complex networks. • An innovative approach (RIIM) is proposed to detect community structure. • RIIM does not require prior knowledge about the size and number of communities. • It covers second-order neighboring nodes and suitable for any size of network. • Experiments on real and synthetic networks show the superiority of RIIM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lrz发布了新的文献求助10
刚刚
李健的小迷弟应助李小猫采纳,获得10
刚刚
科研通AI6应助乐乐乐乐呀采纳,获得10
刚刚
可爱的函函应助Christine采纳,获得10
1秒前
聪明球球发布了新的文献求助10
1秒前
2秒前
2秒前
_2580_关注了科研通微信公众号
2秒前
2秒前
今后应助elain采纳,获得10
2秒前
2秒前
共享精神应助务实的天空采纳,获得10
2秒前
FashionBoy应助YYH采纳,获得10
2秒前
yyy发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
wos完成签到,获得积分10
5秒前
阿森松岛发布了新的文献求助10
7秒前
脑洞疼应助霖硕采纳,获得10
7秒前
liangliang发布了新的文献求助10
7秒前
llllll完成签到 ,获得积分10
7秒前
田哲发布了新的文献求助10
7秒前
yingwang发布了新的文献求助10
7秒前
华仔应助无氧先锋666采纳,获得10
8秒前
rrjl发布了新的文献求助10
9秒前
研友_VZG7GZ应助李思雨采纳,获得10
9秒前
9秒前
he完成签到,获得积分10
10秒前
呆萌晓丝发布了新的文献求助10
10秒前
小二郎应助复杂储采纳,获得10
11秒前
崔文浩发布了新的文献求助10
12秒前
悟空完成签到,获得积分10
13秒前
ycl发布了新的文献求助10
13秒前
guse完成签到 ,获得积分10
14秒前
cc发布了新的文献求助10
14秒前
liangliang完成签到,获得积分10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5322192
求助须知:如何正确求助?哪些是违规求助? 4463759
关于积分的说明 13891152
捐赠科研通 4355055
什么是DOI,文献DOI怎么找? 2392149
邀请新用户注册赠送积分活动 1385755
关于科研通互助平台的介绍 1355494