A novel relevance-based information interaction model for community detection in complex networks

计算机科学 相关性(法律) 数据科学 复杂网络 节点(物理) 群落结构 鉴定(生物学) 过程(计算) 架空(工程) 数据挖掘 万维网 植物 数学 结构工程 组合数学 政治学 法学 生物 工程类 操作系统
作者
Aman Ullah,Bin Wang,Jinfang Sheng,Jun Long,Nasrullah Khan,Muhammad Ejaz
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:196: 116607-116607 被引量:1
标识
DOI:10.1016/j.eswa.2022.116607
摘要

Identification of patronized communities in a complex network structure is an essential aspect of network analysis. These identifications really become challenging when we come across the tasks of dealing with such large-scale community networks when their vertices and edges span over billions of entities like social media networks, news networks, welfare associations, NGO networks etc., to look for a pattern match. Although several incentive approaches have been developed and deployed to ease the process, still there is no valuable alleviation in the severity of the concern; for instance, some of the methods just consider the local information of a node in a network, whereas some of them consider only global information, and some more methods need end-users to provide advanced knowledge about the community structure. To cope with these research issues, an effective community detection approach is required to feasibly alleviate the computational overhead of dealing with the network. Therefore, we propose a novel Relevance-based Information Interaction Model (RIIM) to identify communities in complex networks based on local as well as global topological aspects without providing prior community knowledge and parameter configuration. In order to evaluate the effectiveness of RIIM, we conducted extensive experiments on real and synthetic networks, and the generated performance demonstrates that the proposed approach outperformed the state-of-the-art techniques by effectively identifying the corresponding communities in complex networks. • An innovative approach (RIIM) is proposed to detect community structure. • RIIM does not require prior knowledge about the size and number of communities. • It covers second-order neighboring nodes and suitable for any size of network. • Experiments on real and synthetic networks show the superiority of RIIM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张雷应助苗玉采纳,获得10
1秒前
爱吃苹果发布了新的文献求助10
1秒前
1秒前
三点一共完成签到,获得积分20
2秒前
SupZax发布了新的文献求助30
2秒前
yznfly应助唐然然采纳,获得30
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
sunny完成签到,获得积分10
3秒前
4秒前
乐柚刘完成签到,获得积分20
4秒前
彭日晓完成签到,获得积分20
4秒前
开朗静曼发布了新的文献求助10
5秒前
无我完成签到,获得积分10
5秒前
bkagyin应助小崔采纳,获得10
6秒前
传奇3应助一只壁虎采纳,获得10
6秒前
liutengfei123发布了新的文献求助10
7秒前
8秒前
橙橙橙橙橙子完成签到,获得积分20
8秒前
8秒前
9秒前
9秒前
天天快乐应助宋浩然采纳,获得10
9秒前
10秒前
MC.SU发布了新的文献求助10
10秒前
lll发布了新的文献求助10
11秒前
Hello应助三点一共采纳,获得10
11秒前
wanci应助噜啦噜啦采纳,获得10
11秒前
12秒前
12秒前
傻傻的乌冬面完成签到,获得积分10
12秒前
13秒前
搜集达人应助冷漠的布丁采纳,获得10
13秒前
Antigen发布了新的文献求助30
14秒前
14秒前
大力荷花发布了新的文献求助10
14秒前
香蕉觅云应助谦让的傲芙采纳,获得10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958843
求助须知:如何正确求助?哪些是违规求助? 3505092
关于积分的说明 11122284
捐赠科研通 3236543
什么是DOI,文献DOI怎么找? 1788854
邀请新用户注册赠送积分活动 871424
科研通“疑难数据库(出版商)”最低求助积分说明 802788