A novel relevance-based information interaction model for community detection in complex networks

计算机科学 相关性(法律) 数据科学 复杂网络 节点(物理) 群落结构 鉴定(生物学) 过程(计算) 架空(工程) 数据挖掘 万维网 植物 数学 结构工程 组合数学 政治学 法学 生物 工程类 操作系统
作者
Aman Ullah,Bin Wang,Jinfang Sheng,Jun Long,Nasrullah Khan,Muhammad Ejaz
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:196: 116607-116607 被引量:1
标识
DOI:10.1016/j.eswa.2022.116607
摘要

Identification of patronized communities in a complex network structure is an essential aspect of network analysis. These identifications really become challenging when we come across the tasks of dealing with such large-scale community networks when their vertices and edges span over billions of entities like social media networks, news networks, welfare associations, NGO networks etc., to look for a pattern match. Although several incentive approaches have been developed and deployed to ease the process, still there is no valuable alleviation in the severity of the concern; for instance, some of the methods just consider the local information of a node in a network, whereas some of them consider only global information, and some more methods need end-users to provide advanced knowledge about the community structure. To cope with these research issues, an effective community detection approach is required to feasibly alleviate the computational overhead of dealing with the network. Therefore, we propose a novel Relevance-based Information Interaction Model (RIIM) to identify communities in complex networks based on local as well as global topological aspects without providing prior community knowledge and parameter configuration. In order to evaluate the effectiveness of RIIM, we conducted extensive experiments on real and synthetic networks, and the generated performance demonstrates that the proposed approach outperformed the state-of-the-art techniques by effectively identifying the corresponding communities in complex networks. • An innovative approach (RIIM) is proposed to detect community structure. • RIIM does not require prior knowledge about the size and number of communities. • It covers second-order neighboring nodes and suitable for any size of network. • Experiments on real and synthetic networks show the superiority of RIIM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高高的宛亦完成签到,获得积分10
刚刚
斯文明杰发布了新的文献求助10
1秒前
高兴发箍完成签到,获得积分10
1秒前
badabada发布了新的文献求助10
2秒前
3秒前
Michael-布莱恩特完成签到,获得积分10
3秒前
小马甲应助含蓄老太采纳,获得10
3秒前
chenlixin完成签到,获得积分10
5秒前
真谛完成签到,获得积分10
5秒前
甜美的芷完成签到,获得积分10
6秒前
9秒前
真谛发布了新的文献求助10
9秒前
勤恳的凌文应助kRAY采纳,获得10
9秒前
科研通AI5应助kRAY采纳,获得10
9秒前
细心的梦芝完成签到,获得积分10
9秒前
10秒前
嗯啊完成签到,获得积分10
10秒前
10秒前
爆米花应助thuuu采纳,获得10
10秒前
甜美的芷发布了新的文献求助10
10秒前
12秒前
细心青烟完成签到,获得积分20
12秒前
阴森女公爵完成签到 ,获得积分10
12秒前
13秒前
小鱼发布了新的文献求助10
14秒前
qxz完成签到,获得积分10
14秒前
Zcccjy发布了新的文献求助10
15秒前
wei完成签到,获得积分10
15秒前
科研通AI6应助123yaoyao采纳,获得10
15秒前
15秒前
我不困完成签到,获得积分10
16秒前
16秒前
细心青烟发布了新的文献求助10
16秒前
科研通AI6应助zsgot3采纳,获得10
17秒前
Marshall完成签到 ,获得积分10
17秒前
814791097完成签到,获得积分10
17秒前
苏苏完成签到,获得积分10
18秒前
布偶猫发布了新的文献求助10
19秒前
大模型应助守望者采纳,获得10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633192
求助须知:如何正确求助?哪些是违规求助? 4029241
关于积分的说明 12466657
捐赠科研通 3715470
什么是DOI,文献DOI怎么找? 2050148
邀请新用户注册赠送积分活动 1081735
科研通“疑难数据库(出版商)”最低求助积分说明 964033