清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A novel relevance-based information interaction model for community detection in complex networks

计算机科学 相关性(法律) 数据科学 复杂网络 节点(物理) 群落结构 鉴定(生物学) 过程(计算) 架空(工程) 数据挖掘 万维网 植物 数学 结构工程 组合数学 政治学 法学 生物 工程类 操作系统
作者
Aman Ullah,Bin Wang,Jinfang Sheng,Jun Long,Nasrullah Khan,Muhammad Ejaz
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:196: 116607-116607 被引量:1
标识
DOI:10.1016/j.eswa.2022.116607
摘要

Identification of patronized communities in a complex network structure is an essential aspect of network analysis. These identifications really become challenging when we come across the tasks of dealing with such large-scale community networks when their vertices and edges span over billions of entities like social media networks, news networks, welfare associations, NGO networks etc., to look for a pattern match. Although several incentive approaches have been developed and deployed to ease the process, still there is no valuable alleviation in the severity of the concern; for instance, some of the methods just consider the local information of a node in a network, whereas some of them consider only global information, and some more methods need end-users to provide advanced knowledge about the community structure. To cope with these research issues, an effective community detection approach is required to feasibly alleviate the computational overhead of dealing with the network. Therefore, we propose a novel Relevance-based Information Interaction Model (RIIM) to identify communities in complex networks based on local as well as global topological aspects without providing prior community knowledge and parameter configuration. In order to evaluate the effectiveness of RIIM, we conducted extensive experiments on real and synthetic networks, and the generated performance demonstrates that the proposed approach outperformed the state-of-the-art techniques by effectively identifying the corresponding communities in complex networks. • An innovative approach (RIIM) is proposed to detect community structure. • RIIM does not require prior knowledge about the size and number of communities. • It covers second-order neighboring nodes and suitable for any size of network. • Experiments on real and synthetic networks show the superiority of RIIM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡卡罗特先森完成签到 ,获得积分10
4秒前
宁幼萱完成签到,获得积分10
8秒前
xingran720905关注了科研通微信公众号
11秒前
三磷酸腺苷完成签到 ,获得积分10
11秒前
53秒前
GingerF应助breeze采纳,获得50
1分钟前
jlw完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
alvin完成签到 ,获得积分10
1分钟前
王正浩完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
hank完成签到 ,获得积分10
4分钟前
4分钟前
早早入眠发布了新的文献求助10
4分钟前
早早入眠完成签到,获得积分10
4分钟前
yaoli完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
丹青完成签到 ,获得积分10
5分钟前
Omni完成签到,获得积分10
5分钟前
5分钟前
科研通AI2S应助正直的沛凝采纳,获得10
5分钟前
6分钟前
笑傲完成签到,获得积分10
6分钟前
善良的梦桃完成签到,获得积分10
6分钟前
正直的沛凝完成签到,获得积分10
6分钟前
Leo完成签到,获得积分10
6分钟前
李爱国应助Leo采纳,获得10
6分钟前
张豪杰完成签到 ,获得积分10
6分钟前
7分钟前
善良的梦桃关注了科研通微信公众号
7分钟前
Leo发布了新的文献求助10
7分钟前
斯文败类应助科研通管家采纳,获得10
7分钟前
浮游应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426685
求助须知:如何正确求助?哪些是违规求助? 4540350
关于积分的说明 14172068
捐赠科研通 4458159
什么是DOI,文献DOI怎么找? 2444853
邀请新用户注册赠送积分活动 1435899
关于科研通互助平台的介绍 1413377