A novel relevance-based information interaction model for community detection in complex networks

计算机科学 相关性(法律) 数据科学 复杂网络 节点(物理) 群落结构 鉴定(生物学) 过程(计算) 架空(工程) 数据挖掘 万维网 植物 数学 结构工程 组合数学 政治学 法学 生物 工程类 操作系统
作者
Aman Ullah,Bin Wang,Jinfang Sheng,Jun Long,Nasrullah Khan,Muhammad Ejaz
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:196: 116607-116607 被引量:1
标识
DOI:10.1016/j.eswa.2022.116607
摘要

Identification of patronized communities in a complex network structure is an essential aspect of network analysis. These identifications really become challenging when we come across the tasks of dealing with such large-scale community networks when their vertices and edges span over billions of entities like social media networks, news networks, welfare associations, NGO networks etc., to look for a pattern match. Although several incentive approaches have been developed and deployed to ease the process, still there is no valuable alleviation in the severity of the concern; for instance, some of the methods just consider the local information of a node in a network, whereas some of them consider only global information, and some more methods need end-users to provide advanced knowledge about the community structure. To cope with these research issues, an effective community detection approach is required to feasibly alleviate the computational overhead of dealing with the network. Therefore, we propose a novel Relevance-based Information Interaction Model (RIIM) to identify communities in complex networks based on local as well as global topological aspects without providing prior community knowledge and parameter configuration. In order to evaluate the effectiveness of RIIM, we conducted extensive experiments on real and synthetic networks, and the generated performance demonstrates that the proposed approach outperformed the state-of-the-art techniques by effectively identifying the corresponding communities in complex networks. • An innovative approach (RIIM) is proposed to detect community structure. • RIIM does not require prior knowledge about the size and number of communities. • It covers second-order neighboring nodes and suitable for any size of network. • Experiments on real and synthetic networks show the superiority of RIIM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻轻完成签到,获得积分10
1秒前
Orange应助jiaolulu采纳,获得10
1秒前
xcxc完成签到,获得积分10
3秒前
water应助科研通管家采纳,获得50
3秒前
3秒前
默存完成签到,获得积分10
6秒前
风中的金鱼完成签到 ,获得积分10
8秒前
橙汁完成签到,获得积分10
9秒前
普鲁卡因发布了新的文献求助10
12秒前
cora完成签到 ,获得积分10
18秒前
徐伟康完成签到 ,获得积分10
18秒前
Minicoper完成签到,获得积分10
29秒前
科研通AI5应助普鲁卡因采纳,获得10
29秒前
111完成签到 ,获得积分10
29秒前
奥特曼完成签到 ,获得积分10
29秒前
苏苏完成签到,获得积分10
30秒前
大橙子完成签到,获得积分10
30秒前
kelite完成签到 ,获得积分10
31秒前
火星上的雨柏完成签到 ,获得积分10
32秒前
JY完成签到,获得积分10
33秒前
知行合一完成签到 ,获得积分10
33秒前
36秒前
36秒前
笑林完成签到 ,获得积分10
37秒前
wwl完成签到,获得积分10
37秒前
娟娟完成签到 ,获得积分10
38秒前
Hollen完成签到 ,获得积分10
38秒前
janejane发布了新的文献求助10
39秒前
40秒前
32429606完成签到 ,获得积分10
40秒前
41秒前
普鲁卡因发布了新的文献求助10
43秒前
发个15分的完成签到 ,获得积分10
45秒前
45秒前
wellyou发布了新的文献求助10
45秒前
量子星尘发布了新的文献求助10
50秒前
自由的鹏涛完成签到,获得积分20
53秒前
54秒前
在水一方应助Nayvue采纳,获得10
54秒前
57秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022