Discovery of direct band gap perovskites for light harvesting by using machine learning

带隙 混乱 分类器(UML) 直接和间接带隙 Python(编程语言) 混淆矩阵 材料科学 计算机科学 人工智能 机器学习 光电子学 心理学 精神分析 操作系统
作者
Smarak Rath,G. Sudha Priyanga,N. Nagappan,Tiju Thomas
出处
期刊:Computational Materials Science [Elsevier BV]
卷期号:210: 111476-111476 被引量:17
标识
DOI:10.1016/j.commatsci.2022.111476
摘要

An approach that would allow quick determination of compositions that are most likely to be direct band gap materials would significantly accelerate research on light-harvesting materials. Inorganic perovskites are attractive for this purpose since they afford compositional flexibility, while also offering stability. Here, ABX3 inorganic perovskites (A and B are cations and X is an anion) are classified into direct band gap and indirect band gap materials by using the XGBOOST (eXtreme Gradient BOOST) classifier. We use a dataset containing 1528 ABX3 compounds (X = O, F, Cl, Br, I, S, Se, Te, N, or P) along with information on the nature of their band gap (direct or indirect). All the data is taken from the Materials Project database. Descriptors for these materials are generated using the Matminer python package. Ten-fold cross-validation with the XGBOOST classifier is used on the dataset and the average accuracy is found to be 72.8%. To generate a confusion matrix, the dataset is once again split into a training set and a testing set after cross-validation. Subsequently, the confusion matrix is generated for that particular test set. It is found that the precision for the prediction of direct band gap materials is 81% i.e., 81% of the materials predicted to be direct band gap materials are actually direct band gap materials. Thus, machine learning can be an effective tool for discovering novel direct band gap perovskites. Finally, SHAP (SHapley Additive exPlanations) analysis is performed to determine the most important descriptors. One key insight gained from the SHAP analysis is that the absence of transition metals and elements belonging to groups IIIA to VIIIA with atomic number greater than 20 increases the probability of the perovskite having a direct band gap.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
tender完成签到,获得积分10
2秒前
2秒前
2秒前
阿无还正在完成签到,获得积分10
3秒前
赘婿应助qin202569采纳,获得10
3秒前
是小王啊完成签到,获得积分10
3秒前
周富豪关注了科研通微信公众号
3秒前
小人物完成签到,获得积分10
3秒前
hdcf发布了新的文献求助10
4秒前
局内人发布了新的文献求助10
4秒前
4秒前
5秒前
麦克发布了新的文献求助10
5秒前
释然zc完成签到,获得积分10
5秒前
6秒前
Xiaoli完成签到,获得积分10
6秒前
嘟嘟发布了新的文献求助10
6秒前
华仔应助Gotyababy采纳,获得10
7秒前
Z可发布了新的文献求助10
7秒前
菲菲呀发布了新的文献求助10
7秒前
7秒前
西西西贝发布了新的文献求助10
8秒前
ding应助爬不起来采纳,获得10
8秒前
8秒前
星辰大海应助三水采纳,获得50
8秒前
8秒前
我爱科研发布了新的文献求助10
8秒前
9秒前
爆米花应助失眠的月光采纳,获得30
9秒前
9秒前
早中晚发布了新的文献求助30
9秒前
wanci应助尼古拉耶维奇采纳,获得10
10秒前
Hsu关闭了Hsu文献求助
10秒前
11秒前
tdtk发布了新的文献求助30
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871