A Structural Topic Sentiment Model for Text Analysis

情绪分析 自然语言处理 计算机科学 人工智能
作者
Li Chen,Shawn Mankad
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:3
标识
DOI:10.2139/ssrn.4020651
摘要

We consider the common setting where one observes a large number of opinionated text documents and related covariates, such as the text of online reviews along with the date of the review and the author demographic information. In this setting it can be of interest to understand how the covariates determine the text composition as well as the prevalence and sentiment of various discussion themes. Yet, most topic modeling methods are designed to summarize the text for the purpose of exploratory analysis, not to perform this type of formal statistical inference. Further, topic modeling methods generally do not try to estimate the sentiment of discussion along separate topics which can be critical in business applications (e.g., for summarizing service or product quality). We develop a topic model called the Structural Topic Sentiment (STS) model that introduces a new document-level latent sentiment variable for each topic, which modulates the word frequency within a topic. These latent topic sentiment variables are controlled by document-level covariates to allow for experimental control and regression analysis. We also introduce new computational methods to resolve scalability issues that have forced previous models to restrict to a small number of categorical covariates. We benchmark the STS model on three real-world datasets from surveys, blogs, and Yelp restaurant reviews around the coronavirus disease (COVID-19) pandemic. Our model recovers meaningful results including rich insights about how COVID-19 affects online reviews, demonstrating that the STS model can be useful for regression analysis with text data in addition to topic modeling's traditional use of descriptive analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
upsoar发布了新的文献求助10
1秒前
1秒前
mgh发布了新的文献求助10
1秒前
2秒前
gonna完成签到,获得积分10
2秒前
3秒前
我是老大应助li采纳,获得10
4秒前
YG发布了新的文献求助10
5秒前
xtt完成签到,获得积分10
6秒前
mumu完成签到,获得积分10
7秒前
一朵发布了新的文献求助10
7秒前
8秒前
科研通AI5应助短歌终采纳,获得10
9秒前
10秒前
wanci应助蚝油盗梨采纳,获得10
11秒前
修管子完成签到 ,获得积分0
11秒前
12秒前
yyxhahaha完成签到,获得积分10
15秒前
唐唐发布了新的文献求助10
17秒前
Hello应助超级的千青采纳,获得10
17秒前
在水一方完成签到,获得积分0
18秒前
哈哈hehe发布了新的文献求助20
20秒前
20秒前
上官若男应助Linda采纳,获得10
22秒前
24秒前
清脆绮烟发布了新的文献求助10
25秒前
蚝油盗梨发布了新的文献求助10
27秒前
田様应助健忘远山采纳,获得10
27秒前
深情安青应助哈哈hehe采纳,获得20
28秒前
安详的自中完成签到,获得积分10
28秒前
29秒前
小蘑菇应助潇洒的平松采纳,获得10
29秒前
wanci应助葛力采纳,获得10
30秒前
勤奋大地完成签到,获得积分10
31秒前
失眠紫青应助深情的幼南采纳,获得10
32秒前
32秒前
32秒前
李健应助怕黑的纸鹤采纳,获得10
33秒前
36秒前
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967419
求助须知:如何正确求助?哪些是违规求助? 3512730
关于积分的说明 11164792
捐赠科研通 3247704
什么是DOI,文献DOI怎么找? 1793978
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517