特征向量
帕累托原理
组合数学
兰姆达
维数(图论)
数学
张量(固有定义)
物理
纯数学
数学优化
量子力学
作者
Yang Xu,Zheng-Hai Huang
出处
期刊:Journal of Industrial and Management Optimization
[American Institute of Mathematical Sciences]
日期:2023-01-01
卷期号:19 (3): 2123-2139
摘要
A Pareto eigenvalue of a tensor $ {\mathcal A} $ of order $ m $ and dimension $ n $ is a real number $ \lambda $ for which the complementarity problem \begin{document}$ \mathbf{0}\leq {\mathbf x} \bot (\lambda{\mathcal E}{\mathbf x}^{m-1}- {\mathcal A}{\mathbf x}^{m-1}) \geq \mathbf{0} $\end{document} admits a nonzero solution $ {\mathbf x}\in \mathbb{R}^n $, where $ {\mathcal E} $ is an identity tensor. In this paper, we investigate some basic properties of Pareto eigenvalues, including an equivalent condition for the existence of strict Pareto eigenvalues and the nonnegative conditions of Pareto eigenvalues. Then we focus on the estimation of the bounds of Pareto eigenvalues. Specifically, we propose several Pareto eigenvalue inclusion intervals, and discuss the relationships among them and the known result, which demonstrate that the inclusion intervals obtained are tighter than the known one. Finally, as an application of an achieved inclusion intervals, we propose a sufficient condition for judging that a tensor is strictly copositive.
科研通智能强力驱动
Strongly Powered by AbleSci AI