195P Radiomics and dosiomics signature from whole lung predicts radiation pneumonitis: A model development study with prospective external validation and decision-curve analysis

无线电技术 医学 放射治疗 列线图 布里氏评分 判别式 自举(财务) 逻辑回归 放射科 接收机工作特性 核医学 统计 人工智能 内科学 数学 计算机科学 计量经济学
作者
Z. Zhang,Ziqi Wang,André Dekker,Leonard Wee
出处
期刊:Annals of Oncology [Elsevier]
卷期号:33: S119-S119 被引量:2
标识
DOI:10.1016/j.annonc.2022.02.120
摘要

Radiation pneumonitis (RP) is one of the common side effects of radiotherapy in the thoracic region. Radiomics and dosiomics quantifies information implicit within medical images and radiotherapy dose distributions. In this study we demonstrated the prognostic potential of radiomics, dosiomics, and clinical features for RP prediction. Radiomics, dosiomics, dose-volume histogram (DVH) metrics, and clinical parameters were obtained on 314 retrospectively-collected and 35 prospectively-enrolled patients diagnosed with lung cancer between 2013 to 2019. A radiomics risk score (R-score) and dosiomics risk score (D-score) and DVH-score were calculated based on logistic regression after feature selection. Seven models were built using different combinations of R-score, D-score, and clinical parameters to evaluate their added prognostic power. The DVH model was built as a classical model for comparison with the dosiomics model. Over-optimism was evaluated by bootstrap resampling from the training set, and the prospectively-collected cohort was used as the external test set. Model calibration and decision-curve characteristics of the best-performing models were evaluated. For ease of further evaluation, nomograms were constructed for selected models. A model built by integrating all of R-score, D-score, and clinical parameters had the best discriminative ability with area under the curves (AUCs) of 0.793 (95%CI 0.735-0.851),0.774 (95%CI 0.762-0.786), and 0.855 (95%CI 0.719-0.990) in the training set, bootstrapping set, and external test set, respectively. The results of the calibration curve and decision curve analysis showed that the final model of the nomogram has potential for future clinical application.Table: 195PModelTrain (95%CI)Validation by bootstrapping (95%CI)Testing (95%CI)R-score0.676 (0.606-0.745)0.619 (0.592-0.646)0.671 (0.558-0.899)D-score0.728 (0.665-0.790)0.687 (0.667-0.706)0.684 (0.573-0.883)DVH-score0.637 (0.570-0.705)0.628 (0.613-0.642)0.661 (0.551-0.856)Clinical parameters0.664 (0.594-0.735)0.654 (0.628-0.680)0.709 (0.509-0.91)R-score + D-score0.735 (0.673-0.796)0.729 (0.720-0.736)0.739 (0.553-0.926)R-score + C0.717 (0.652-0.782)0.701 (0.683-0.719)0.771 (0.585-0.962)D-score + C0.770 (0.710-0.830)0.755 (0.744-0.765)0.756 (0.559-0.954)R-score + D-score + C0.793 (0.735-0.851)0.774 (0.762-0.786)0.855 (0.719-0.990) Open table in a new tab Radiomics and dosiomics features have potential to assist with the prediction of RP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十元完成签到,获得积分10
1秒前
靓丽的碧空完成签到,获得积分20
2秒前
ggg发布了新的文献求助10
4秒前
4秒前
大模型应助靓丽的碧空采纳,获得10
7秒前
文与武完成签到 ,获得积分10
8秒前
9秒前
cl0928发布了新的文献求助10
9秒前
鄂成危发布了新的文献求助10
10秒前
王小能完成签到,获得积分10
10秒前
ggg完成签到,获得积分10
11秒前
tachikoma应助zhaoyingxin采纳,获得10
11秒前
HIBARRA完成签到,获得积分10
11秒前
12秒前
12秒前
李健春完成签到 ,获得积分10
14秒前
香草泡芙完成签到 ,获得积分10
15秒前
积极的未来完成签到,获得积分10
15秒前
凯撒的归凯撒完成签到 ,获得积分10
15秒前
DONGLK发布了新的文献求助10
16秒前
hawaii66完成签到,获得积分10
16秒前
傻傻的磬发布了新的文献求助10
16秒前
669完成签到,获得积分10
17秒前
糊涂涂给糊涂涂的求助进行了留言
17秒前
和谐蛋蛋完成签到,获得积分10
18秒前
22秒前
23秒前
loudly完成签到,获得积分10
23秒前
zqingqing完成签到,获得积分10
24秒前
阿呆在发呆关注了科研通微信公众号
25秒前
26秒前
27秒前
zhan发布了新的文献求助20
27秒前
咕噜完成签到,获得积分10
28秒前
29秒前
爆米花应助DONGLK采纳,获得10
29秒前
开朗以亦发布了新的文献求助10
30秒前
Zhang发布了新的文献求助10
30秒前
傲娇班发布了新的文献求助30
30秒前
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134943
求助须知:如何正确求助?哪些是违规求助? 2785830
关于积分的说明 7774354
捐赠科研通 2441699
什么是DOI,文献DOI怎么找? 1298104
科研通“疑难数据库(出版商)”最低求助积分说明 625079
版权声明 600825