Measurement of Perfusion Heterogeneity within Tumor Habitats on Magnetic Resonance Imaging and Its Association with Prognosis in Breast Cancer Patients

危险系数 医学 磁共振成像 比例危险模型 内科学 乳腺癌 肿瘤科 队列 放射科 癌症 置信区间
作者
H. Cho,Hae Jung Kim,Sang Yu Nam,Jeong Eon Lee,Boo‐Kyung Han,Eun Young Ko,Ji Soo Choi,Hyunjin Park,Eun Sook Ko
出处
期刊:Cancers [MDPI AG]
卷期号:14 (8): 1858-1858 被引量:11
标识
DOI:10.3390/cancers14081858
摘要

The purpose of this study was to identify perfusional subregions sharing similar kinetic characteristics from dynamic contrast-enhanced magnetic resonance imaging (MRI) using data-driven clustering, and to evaluate the effect of perfusional heterogeneity based on those subregions on patients' survival outcomes in various risk models. From two hospitals, 308 and 147 women with invasive breast cancer who underwent preoperative MRI between October 2011 and July 2012 were retrospectively enrolled as development and validation cohorts, respectively. Using the Cox-least absolute shrinkage and selection operator model, a habitat risk score (HRS) was constructed from the radiomics features from the derived habitat map. An HRS-only, clinical, combined habitat, and two conventional radiomics risk models to predict patients' disease-free survival (DFS) were built. Patients were classified into low-risk or high-risk groups using the median cutoff values of each risk score. Five habitats with distinct perfusion patterns were identified. An HRS was an independent risk factor for predicting worse DFS outcomes in the HRS-only risk model (hazard ratio = 3.274 [95% CI = 1.378-7.782]; p = 0.014) and combined habitat risk model (hazard ratio = 4.128 [95% CI = 1.744-9.769]; p = 0.003) in the validation cohort. In the validation cohort, the combined habitat risk model (hazard ratio = 4.128, p = 0.003, C-index = 0.760) showed the best performance among five different risk models. The quantification of perfusion heterogeneity is a potential approach for predicting prognosis and may facilitate personalized, tailored treatment strategies for breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ljssll完成签到 ,获得积分10
1秒前
3秒前
3秒前
3秒前
zz发布了新的文献求助10
3秒前
mhl11应助阿峰采纳,获得10
4秒前
4秒前
hbu123完成签到,获得积分10
4秒前
尊敬枕头完成签到 ,获得积分10
5秒前
纪外绣完成签到,获得积分10
7秒前
DXL完成签到,获得积分10
7秒前
en完成签到,获得积分10
8秒前
枣核儿完成签到,获得积分10
9秒前
ch发布了新的文献求助10
9秒前
9秒前
9秒前
Neo完成签到,获得积分10
9秒前
沧海云完成签到 ,获得积分10
10秒前
中科院一区选手完成签到,获得积分10
10秒前
小咸鱼完成签到 ,获得积分10
10秒前
Singularity发布了新的文献求助20
11秒前
Stvbborn完成签到 ,获得积分10
11秒前
仁爱发卡完成签到,获得积分10
12秒前
12秒前
jqs完成签到,获得积分10
13秒前
Serena完成签到,获得积分10
13秒前
阿曾完成签到 ,获得积分10
13秒前
李友健完成签到 ,获得积分10
14秒前
爱尚完成签到,获得积分10
14秒前
热心小松鼠发布了新的文献求助200
14秒前
XIA完成签到 ,获得积分10
15秒前
Ava应助madmax采纳,获得10
15秒前
16秒前
16秒前
研友_LNBW5L完成签到,获得积分10
18秒前
bbpp完成签到,获得积分10
18秒前
xiaoyu完成签到,获得积分10
18秒前
文献狗完成签到,获得积分10
18秒前
好想被风刮走完成签到,获得积分10
18秒前
眼睛大的老虎完成签到,获得积分10
19秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330749
求助须知:如何正确求助?哪些是违规求助? 2960226
关于积分的说明 8599831
捐赠科研通 2638961
什么是DOI,文献DOI怎么找? 1444611
科研通“疑难数据库(出版商)”最低求助积分说明 669177
邀请新用户注册赠送积分活动 656800