SC-RoadDeepNet: A New Shape and Connectivity-Preserving Road Extraction Deep Learning-Based Network From Remote Sensing Data

计算机科学 分割 人工智能 残余物 深度学习 卷积神经网络 交叉口(航空) 模式识别(心理学) 特征提取 边界(拓扑) 数据挖掘 计算机视觉 算法 数学 地图学 地理 数学分析
作者
Abolfazl Abdollahi,Biswajeet Pradhan,Abdullah Alamri
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:28
标识
DOI:10.1109/tgrs.2022.3143855
摘要

Existing automated road extraction approaches concentrate on regional accuracy rather than road shape and connectivity quality. Most of these techniques produce discontinuous outputs caused by obstacles, such as shadows, buildings, and vehicles. This study proposes a shape and connectivity-preserving road identification deep learning-based architecture called SC-RoadDeepNet to overcome the discontinuous results and the quality of road shape and connectivity. The proposed model comprises a state-of-the-art deep learning-based network, namely, the recurrent residual convolutional neural network, boundary learning (BL), and a new measure based on the intersection of segmentation masks and their (morphological) skeleton called connectivity-preserving centerline Dice (CP_clDice). The recurrent residual convolutional layers accumulate low-level features for segmentation tasks, thus allowing for better feature representation. Such representation enables us to construct a UNet network with the same number of network parameters but improved segmentation effectiveness. BL also aids the model in improving the road’s boundaries by penalizing boundary misclassification and fine-tuning the road form. Furthermore, the CP_clDice method aids the model in maintaining road connectivity and obtaining accurate segmentations. We demonstrate that CP_clDice ensures connection preservation for binary segmentation, thereby allowing for efficient road network extraction at the end. The proposed model improves F1 score accuracy to 5.49%, 4.03%, 3.42%, and 2.27% compared with other comparative models, such as LinkNet, ResUNet, UNet, and VNet, respectively. Furthermore, qualitative and quantitative assessments demonstrate that the proposed SC-RoadDeepNet can improve road extraction by tackling shadow and occlusion-related interruptions. These assessments can also produce high-resolution results, particularly in the area of road network completeness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Capital发布了新的文献求助10
1秒前
鲤鱼不吐泡泡关注了科研通微信公众号
2秒前
半江发布了新的文献求助10
2秒前
热心的寒天完成签到,获得积分10
2秒前
xiaoxiao完成签到,获得积分10
3秒前
忐忑的惜天完成签到,获得积分20
6秒前
哎呀呀完成签到,获得积分10
6秒前
今后应助LLLLL采纳,获得10
7秒前
7秒前
8秒前
tonyhuang完成签到,获得积分10
9秒前
9秒前
空2完成签到 ,获得积分10
9秒前
脑洞疼应助22222采纳,获得10
9秒前
10秒前
10秒前
似鱼发布了新的文献求助10
10秒前
11秒前
小二郎应助qaw采纳,获得10
12秒前
深情安青应助Feng采纳,获得10
12秒前
13秒前
宫一手发布了新的文献求助10
13秒前
雪白的雪完成签到,获得积分10
13秒前
神经蛙完成签到,获得积分10
14秒前
郭郭完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
liu11发布了新的文献求助10
16秒前
16秒前
16秒前
杰尼龟发布了新的文献求助10
16秒前
16秒前
碎峰发布了新的文献求助10
17秒前
18秒前
19秒前
19秒前
赘婿应助lihaifeng采纳,获得10
20秒前
20秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129368
求助须知:如何正确求助?哪些是违规求助? 2780183
关于积分的说明 7746679
捐赠科研通 2435368
什么是DOI,文献DOI怎么找? 1294055
科研通“疑难数据库(出版商)”最低求助积分说明 623518
版权声明 600542