Facial expression recognition based on deep learning

计算机科学 人工智能 面部表情 深度学习 卷积神经网络 过度拟合 面部识别系统 三维人脸识别 表达式(计算机科学) 面部表情识别 模式识别(心理学) 机器学习 领域(数学) 人工神经网络 人脸检测 程序设计语言 数学 纯数学
作者
Huilin Ge,Zhiyu Zhu,Yuewei Dai,Biao Wang,Xuedong Wu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:215: 106621-106621 被引量:46
标识
DOI:10.1016/j.cmpb.2022.106621
摘要

Facial expression recognition technology will play an increasingly important role in our daily life. Autonomous driving, virtual reality and all kinds of robots integrated into our life depend on the development of facial expression recognition technology. Many tasks in the field of computer vision are based on deep learning technology and convolutional neural network. The paper proposes an occluded expression recognition model based on the generated countermeasure network. The model is divided into two modules, namely, occluded face image restoration and face recognition.Firstly, this paper summarizes the research status of deep facial expression recognition methods in recent ten years and the development of related facial expression database. Then, the current facial expression recognition methods based on deep learning are divided into two categories: Static facial expression recognition and dynamic facial expression recognition. The two methodswill be introduced and summarized respectively. Aiming at the advanced deep expression recognition algorithms in the field, the performance of these algorithms on common expression databases is compared, and the strengths and weaknesses of these algorithms are analyzed in detail.As the task of facial expression recognition is gradually transferred from the controlled laboratory environment to the challenging real-world environment, with the rapid development of deep learning technology, deep neural network can learn discriminative features, and is gradually applied to automatic facial expression recognition task. The current deep facial expression recognition system is committed to solve the following two problems: (1) Overfitting due to lack of sufficient training data; (2) In the real world environment, other variables that have nothing to do with expression bring interference problems.From the perspective of algorithm, combining other expression models, such as facial action unit model and pleasure arousal dimension model, as well as other multimodal models, such as audio mode, 3D face depth information and human physiological information, can make expression recognition more practical.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柳一发布了新的文献求助10
1秒前
柠檬味电子对儿完成签到,获得积分10
1秒前
黑眼豆豆完成签到,获得积分10
1秒前
和谐的迎天完成签到,获得积分10
2秒前
2秒前
梨里完成签到 ,获得积分10
2秒前
淡定的萝莉完成签到,获得积分10
2秒前
3秒前
Yingling发布了新的文献求助10
3秒前
欧欧欧导完成签到,获得积分10
3秒前
Wt完成签到,获得积分10
4秒前
老子完成签到,获得积分10
5秒前
MgZn完成签到 ,获得积分10
6秒前
大眼的平松完成签到,获得积分10
6秒前
周六八发布了新的文献求助10
7秒前
Wt发布了新的文献求助20
7秒前
evelyn完成签到 ,获得积分10
7秒前
积极问晴发布了新的文献求助10
8秒前
赵四胖完成签到,获得积分10
9秒前
liaoyoujiao完成签到,获得积分10
9秒前
郝好月完成签到,获得积分10
9秒前
Herrily完成签到,获得积分10
9秒前
9秒前
崔崔完成签到,获得积分10
10秒前
叮咚jingle完成签到,获得积分20
10秒前
七夜完成签到,获得积分10
11秒前
11秒前
曲聋五完成签到 ,获得积分10
11秒前
MoYE完成签到 ,获得积分10
11秒前
YY发布了新的文献求助10
13秒前
良辰应助水论文行者采纳,获得15
13秒前
秀兰完成签到,获得积分10
14秒前
dydy发布了新的文献求助10
15秒前
15秒前
在水一方应助Jay采纳,获得10
15秒前
彭于晏应助落雁沙采纳,获得10
16秒前
Gong发布了新的文献求助10
16秒前
山海之间完成签到,获得积分10
17秒前
丹丹完成签到,获得积分10
18秒前
19秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167575
求助须知:如何正确求助?哪些是违规求助? 2819030
关于积分的说明 7924492
捐赠科研通 2478874
什么是DOI,文献DOI怎么找? 1320523
科研通“疑难数据库(出版商)”最低求助积分说明 632810
版权声明 602443