A directional ghost-cell immersed boundary method for low Mach number reacting flows with interphase heat and mass transfer

马赫数 相间 机械 传质 浸入边界法 传热 边界(拓扑) 物理 数学分析 数学 遗传学 生物
作者
Zhisong Ou,Cheng Chi,Liejin Guo,Dominique Thévenin
出处
期刊:Journal of Computational Physics [Elsevier BV]
卷期号:468: 111447-111447 被引量:18
标识
DOI:10.1016/j.jcp.2022.111447
摘要

• General Robin (Neumann) BC are accurately imposed and satisfied. • Neither polynomial assumptions or complex interpolations are required. • Low Mach number variable-density flows are considered. • Reaction-induced interfacial phenomena can be accurately resolved. • Second-order accuracy is preserved for all the implementations. This paper presents a directional ghost-cell immersed boundary method for low Mach number reacting flows with general boundary conditions, extending the approach described in Chi et al. (2020) [17] . The method employs locally directional schemes for ghost value reconstruction and utilization along each discretization direction. In this manner, the boundary condition can be naturally imposed on the boundary intersection point along each coordinate direction, allowing an easy and straightforward implementation of complex boundary conditions. Using Taylor series approximation of fluid points near the immersed boundary, the boundary variable and its gradient governed by arbitrary boundary condition can be implicitly involved, leading to a reliable polynomial extrapolation for the ghost values. In this way, Dirichlet, Neumann and Robin boundary conditions are implemented for general variables with formally second-order accuracy. For reacting gas-solid flow with surface reactions, the reaction-related coefficients in Robin boundary condition lead to a complex implementation in conventional IBM techniques, while the present directional framework leads to a straightforward algorithm while preserving accuracy. The proposed method has been checked by a series of test cases with different boundary conditions, including basic flow, heat and species transport, Stefan problem, and finally two practical applications involving heat and mass transfer. The local accuracy of all boundary conditions exhibits nearly second-order convergence, as expected. While only a single solid object is considered in this first work, the same method can be simply extended to multiple objects of arbitrary shape, leading to fully resolved simulation of reactive particle-laden flows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
icerell完成签到,获得积分10
刚刚
脑袋空空完成签到,获得积分10
刚刚
Viikey完成签到,获得积分10
1秒前
懒123发布了新的文献求助10
1秒前
Devon完成签到,获得积分10
2秒前
机智灵薇完成签到,获得积分10
4秒前
HDY完成签到,获得积分10
4秒前
seedcode完成签到,获得积分10
4秒前
zm完成签到,获得积分10
5秒前
He完成签到,获得积分10
5秒前
唠叨的天薇完成签到 ,获得积分10
6秒前
舍得完成签到,获得积分10
6秒前
yining完成签到,获得积分20
6秒前
基尔霍夫完成签到,获得积分10
6秒前
安慕希完成签到,获得积分10
7秒前
金蛋蛋完成签到 ,获得积分10
7秒前
好好学习完成签到,获得积分10
7秒前
风犬少年完成签到,获得积分10
8秒前
多米完成签到,获得积分10
8秒前
夏侯以旋完成签到,获得积分10
9秒前
zimu8473完成签到,获得积分10
9秒前
shirley完成签到,获得积分10
9秒前
HMR完成签到 ,获得积分10
9秒前
along完成签到,获得积分20
9秒前
10秒前
z_8023完成签到,获得积分10
11秒前
魁梧的蜜蜂完成签到,获得积分10
11秒前
无餍应助Jasmine采纳,获得10
11秒前
xiamovivi完成签到,获得积分10
12秒前
时来运转完成签到 ,获得积分10
13秒前
kkk完成签到,获得积分10
14秒前
拼搏冷卉完成签到,获得积分10
15秒前
十三完成签到,获得积分10
15秒前
不钓鱼完成签到,获得积分10
15秒前
火星上的雨莲完成签到,获得积分10
16秒前
dspan发布了新的文献求助10
16秒前
zhizhi完成签到 ,获得积分10
16秒前
舒适香露完成签到,获得积分10
16秒前
研友_VZG7GZ应助开放的白晴采纳,获得10
16秒前
16秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3750098
求助须知:如何正确求助?哪些是违规求助? 3293388
关于积分的说明 10081485
捐赠科研通 3008743
什么是DOI,文献DOI怎么找? 1652384
邀请新用户注册赠送积分活动 787426
科研通“疑难数据库(出版商)”最低求助积分说明 752179