An Intelligent Government Complaint Prediction Approach

投诉 计算机科学 合并(版本控制) 分类器(UML) 任务(项目管理) 政府(语言学) 人工智能 机器学习 数据挖掘 情报检索 语言学 哲学 政治学 法学 管理 经济
作者
Siqi Chen,Yanling Zhang,Bin Song,Xiaojiang Du,Mohsen Guizani
出处
期刊:Big Data Research [Elsevier]
卷期号:30: 100336-100336 被引量:4
标识
DOI:10.1016/j.bdr.2022.100336
摘要

Recent advances in machine learning (ML) bring more opportunities for greater implementation of smart government construction. However, there are many challenges in terms of government data application due to the previous nonstandard records and man-made errors. In this paper, we propose a practical intelligent government complaint prediction (IGCP) framework that helps governments quickly respond to citizens' consultations and complaints via ML technologies. In addition, we put forward an automatic label correction method and demonstrate its effectiveness on the performance improvement of intelligent government complaint prediction task. Specifically, the central server collects the interaction records from users and departments and automatically integrates them by the label correction approach which is designed to evaluate the similarity between different labels in data, and merge highly similar labels and corresponding samples into their most similar category. Based on those refined data, the central server quickly generates accurate solutions to complaints through text classification algorithms. The main innovation of our approach is that we turn the task of government complaint distribution into a text classification problem which is uniformly coordinated by the central server, and employ the label correction approach to correct redundant labels for training better models based on limited complaint records. To explore the influences of our approach, we evaluate its performance on real-world government service records provided by our collaborator. The experimental results demonstrate the prediction task which uses the label correction algorithm achieves significant improvements on almost all metrics of the classifier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
居不易应助妮妮采纳,获得10
刚刚
1秒前
Lin关闭了Lin文献求助
1秒前
刘茂甫发布了新的文献求助10
2秒前
2秒前
4秒前
万海发布了新的文献求助10
4秒前
didilvlv完成签到,获得积分10
5秒前
morii发布了新的文献求助10
5秒前
啦啦啦123发布了新的文献求助10
7秒前
7秒前
DQ发布了新的文献求助10
8秒前
8秒前
li关闭了li文献求助
8秒前
9秒前
10秒前
11秒前
liumangtu完成签到,获得积分10
12秒前
大模型应助李如意采纳,获得10
12秒前
spark发布了新的文献求助10
12秒前
13秒前
2028847955发布了新的文献求助10
14秒前
我是老大应助冷酷云朵采纳,获得10
14秒前
xiaosu发布了新的文献求助30
14秒前
15秒前
ddd发布了新的文献求助10
18秒前
18秒前
李健应助玉玉采纳,获得10
18秒前
Orange应助sansan采纳,获得10
19秒前
寻度完成签到,获得积分10
19秒前
柚子想吃橘子完成签到,获得积分10
19秒前
彭于晏应助小聂采纳,获得10
20秒前
大模型应助LO7pM2采纳,获得30
20秒前
21秒前
喝水选手发布了新的文献求助10
22秒前
23秒前
HaojunWang发布了新的文献求助10
23秒前
活泼小刺猬完成签到 ,获得积分10
25秒前
孟子完成签到,获得积分10
26秒前
26秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153624
求助须知:如何正确求助?哪些是违规求助? 2804799
关于积分的说明 7861757
捐赠科研通 2462835
什么是DOI,文献DOI怎么找? 1311002
科研通“疑难数据库(出版商)”最低求助积分说明 629428
版权声明 601821