A hybrid autoencoder framework of dimensionality reduction for brain-computer interface decoding

计算机科学 降维 自编码 脑-机接口 人工智能 模式识别(心理学) 主成分分析 解码方法 稳健性(进化) 核(代数) 人工神经网络 算法 脑电图 数学 组合数学 精神科 基因 生物化学 化学 心理学
作者
Xingchen Ran,Weidong Chen,Blaise Yvert,Shaomin Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:148: 105871-105871 被引量:4
标识
DOI:10.1016/j.compbiomed.2022.105871
摘要

As the scale of neural recording increases, Brain-computer interfaces (BCIs) are restrained by high-dimensional neural features, so dimensionality reduction is required as a preprocess of neural features. In this context, we propose a novel framework based on deep learning to reduce the dimensionality of neural features that are typically extracted from electrocorticography (ECoG) or local field potential (LFP). A high-performance autoencoder was implemented by chaining convolutional layers to deal with spatial and frequency dimensions with bottleneck long short-term memory (LSTM) layers to deal with the temporal dimension of the features. Furthermore, this autoencoder is combined with a fully connected layer to regularize the training. By applying the proposed method to two different datasets, we found that this dimensionality reduction method largely outperforms kernel principal component analysis (KPCA), partial least square (PLS), preferential subspace identification (PSID), and latent factor analysis via dynamical systems (LFADS). Besides, the new features obtained by our method can be applied to various BCI decoders, without significant differences in decoding performance. A novel method is proposed as a reliable tool for efficient dimensionality reduction of neural signals. Its high performance and robustness are promising to enhance the decoding accuracy and long-term stability of online BCI systems based on large-scale neural recordings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
祺羽发布了新的文献求助10
刚刚
慕课魔芋完成签到,获得积分20
刚刚
1秒前
品品发布了新的文献求助10
1秒前
2秒前
koukaki发布了新的文献求助10
2秒前
坚强小蚂蚁完成签到,获得积分10
3秒前
3秒前
4秒前
huhuhuhu关注了科研通微信公众号
4秒前
4秒前
慕课魔芋发布了新的文献求助10
5秒前
AA1Z发布了新的文献求助10
5秒前
舒适涵山完成签到,获得积分10
5秒前
小鼠星球发布了新的文献求助10
6秒前
喵小权关注了科研通微信公众号
6秒前
白羽佳发布了新的文献求助10
9秒前
王明慧发布了新的文献求助10
9秒前
23lk发布了新的文献求助10
9秒前
花生仔应助小小怪采纳,获得10
10秒前
美丽的楼房完成签到 ,获得积分10
11秒前
李知恩完成签到 ,获得积分10
11秒前
Present完成签到,获得积分10
12秒前
12秒前
13秒前
斯文败类应助23lk采纳,获得10
14秒前
16秒前
16秒前
16秒前
16秒前
18秒前
19秒前
20秒前
英俊的铭应助mint采纳,获得10
22秒前
田様应助yyxx采纳,获得10
22秒前
6666发布了新的文献求助10
24秒前
豪士赋完成签到,获得积分10
24秒前
Steven发布了新的文献求助10
24秒前
ziyewutong完成签到,获得积分10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956621
求助须知:如何正确求助?哪些是违规求助? 3502685
关于积分的说明 11109755
捐赠科研通 3233502
什么是DOI,文献DOI怎么找? 1787408
邀请新用户注册赠送积分活动 870676
科研通“疑难数据库(出版商)”最低求助积分说明 802143